
UNCLASSIFIED Copy 17 of 82copies

IDA PAPER P-2996

SURVEY OF SOFTWARE METRICS IN
THE DEPARTMENT OF DEFENSE AND INDUSTRY

Beth Springsteen, Task Leader,

Dennis W. Fife
John F. Kramer

Reginald N. Meeson
Judy PopelasDavid A. Wheeler .1 ELECTE 1

FEB 171995

April 1994

CC>)
Prepared for (Ti

Office of the Director, Defense Research and Engineering

-Ctx o
i Approved for public release, unlimited distribution: September 23, 194.

CAý

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311-1772

SUNCLASSIFIED IDA Log No. HQ 94-045746

DEFINITIONS
IDA publishes the following documents to report the results of Its work.

Reports
Reports are the most authoritative and most carefully considered products IDA publishes.
They normally embody results of major projects which (a) have a direct bearing on
decisions affecting major programs, (b) address Issues of significant concern to the
Executive Branch, the Congress and/or the public, or (c) address Issues that have
significant economic Implications. IDA Reports are reviewed by outside panels of experts
to ensure their high quality and relevance to the problems studied, and they are released
by the President of IDA.

Group Reports
Group Reports record the findings and results of IDA established working groups and
panels composed of senior Individuals addressing major Issues which otherwise would be
the subject of an IDA Report. IDA Group Reports are reviewed by the senior Individuals
responsible for the project and others as selected by IDA to ensure their high quality and
relevance to the problems studied, and are released by the President of IDA.

Papers
Papers, also authoritative and carefully considered products of IDA, address studies that
are narrower In scope than those covered In Reports. IDA Papers are reviewed to ensure
that they meet the high standards expected of refereed papers In professional journals or
formal Agency reports.

Documents
IDA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done In quick reaction studies, (b) to record the proceedings of
conferences and meetings, (c) to make available preliminary and tentative results of
analyses, (d) to record data developed In the course of an Investigation, or (e) to forward
Information that Is essentially unanalyzed and unevaluated. The review of IDA Documents
Is suited to their content and Intended use.

The work reported In this document was conducted under contract MDA 903 89 C 0003 for
the Department of Defense. The publication of this IDA document does not Indicate
endorsement by the Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency.

@ 1994 Institute for Defense Analyses i

SThe Government of the United States Is granted an unlimited license to reproduce this 1
document. I

UNCLASSIFIED

IDA PAPER P-2996

SURVEY OF SOFTWARE METRICS IN
THE DEPARTMENT OF DEFENSE AND INDUSTRY

Beth Springsteen, Task Leader Acso o

Dennis W. Fife NTIS CRAMl
John F. Kramer DTIC TAB

* Reginald N. Meeson Unannounced
Judy Popelas Justif ication

David A. Wheeler

Distribution
* Availability Codes

Dit Avail and I or
April 1994 Dit Special

Approved tar public release, unlimited distribution: September 23, 1994.

I DA TCQAir

INSTITUTE FOR DEFENSE ANALYSES
Contract MDA 903 89 C 0003

Task T-A15-742

UNCLASSIFIED

PREFACE

This document was prepared by the Institute for Defense Analyses under the Task

Order, Analysis of Software Initiatives, for the Office of the Director of Defense Research

and Engineering. It fulfills an objective of the task, to survey the availability and applica-

bility of commercial capabilities in the area of software metrics, including research and

development and state of practice, and to compare commercial use of such capabilities with

those within the Department of Defense.

A review of this document was performed by Mr. Bill Brykczynski, Dr. Michael

Frame, Ms. Audrey Hook, Dr. Richard Ivanetich, and Ms. Kathleen Jordan.

0

0

EXECUTIVE SUMMARY

This report provides summaries and an initial assessment of the state of

development and use of computer software measurement in Department of Defense (DoD)

organizations and private companies, including DoD contractors. The work was

undertaken to support planning for improving the implementation of software metrics

throughout DoD's weapon system acquisition process.

The term "software metrics" in practice refers to a wide variety of data associated

with software development projects. Many metrics are composites or aggregates of
* individual factors, and many are direct observations or determinations of someone such as

a programmer, configuration manager, or software tester. Metrics address software product
factors such as size in lines of source code, as well as management and work progress
factors such as expended funds or effort.

0 The study results emerged primarily from interviews with about 50 people within

DoD organizations and industry, selected because they are leaders in developing and

applying software metrics and also are widely knowledgeable of metrics usage within their

organization. They appeared to have the best perspective for addressing all of the study's

questions, while practical limitations prevented interviews also with direct metrics users

such as DoD acquisition program offices or industry product development groups. Metrics
policies, guides or handbooks, and technical articles also were reviewed.

The analysis addresses the following areas:

* Goals for software metrics

• Implementation of metrics, including policy and standards

* Benefits and successes in applying metrics

* Metrics used and their reporting across organizational levels

* Tools and repositories supporting metrics collection and use

* Lessons learned from metrics experience and best practices

ES-i

Future plans and research recommendations

Summary reports are given for 11 DoD organizations, the National Aeronautics and

Space Administration Goddard Space Center's Software Engineering Laboratory, and the

Software Engineering Institute of Carnegie Mellon University, as well as 10 industry

organizations. The private companies are not identified by name, as agreed in order to

encourage their information disclosure.

Two key questions were among those formulated as the scope of the study:

"* What factors distinguish industrial and DoD practice in software metrics?

"* Does industrial practice reveal metrics capabilities, concepts, or tools that could

benefit DoD's weapon system acquisition process? 9

Significant conclusions on these questions include the following:

" The main focus of software measurement considerations within DoD

organizations is to help acquisition program managers. However, such support 9
is limited and immature. DoD organizations recommend metrics without giving

sufficient guidance for incorporating them into the practical decisions and

exercise of program management. Measurement needs of DoD activities, other

than acquisition program management, are insufficiently recognized and 0
supported. Two types of DoD in-house software development activity for

weapon systems may be cited as examples of other software metrics needs:

development of support software, e.g., simulators, trainers, test environments,

and post-deployment software support of weapon systems.

" Major impediments to metrics improvement within DoD include lack of goals

that especially benefit software acquisition, lack of documented successes, lack

of resources for metrics technology transfer and training, and apparently strong

program office opposition to requirements imposing additional unfunded cost

or current metrics reporting to outside organizations.

" In general, industry practice is more mature and further evolved for both DoD

contractors and strictly commercial organizations. It is motivated by a clear and

widely supportable purpose, i.e., improving a company's competitiveness for

the sake of gaining new business. Companies are moving to gain marketplace

benefits from measurement, not merely to solve short-range problems within

projects. In their approach, companies are establishing metrics policies and

ES-2

measurement support groups, and they are investing in building or acquiring

better metrics tools.

SIndustry trends appear at odds with recommendations heard relative to current

DoD acquisition practice. Company practices aim to collect the data needed for

well-defined purposes, to integrate measurement with development process

innovations, and to exploit metrics in an overall business perspective. DoD staff

are recommending limited data collection and measurement practices devised

to meet constraints and choices suited to individual development projects.

To pursue a measurement approach comparable to that emerging in industry,

DoD must have acquisition process objectives that transcend individual

acquisition programs. Also, it would have to provide incentives for performance

similar to what the marketplace offers to commercial producers.

0

o

S

S

ES-3

Table of Contents

* 1. INTRODUCTION .. 1-1

1.1 PURPOSE ... 1-1
1.2 SCOPE .. 1-1
1.3 APPROACH ... 1-2

* 1.4 REPORT OVERVIEW .. 1-4

2. SUMMARY OF DOD METRICS DEVELOPMENT AND USE 2-1

2.1 GOALS FOR M ETRICS .. 2-2
2.2 M ETRICS IM PLEM ENTATION .. 2-3

0 2.3 BENEFITS ... 2-4
2.4 M ETRICS AND REPORTS ... 2-5

2.4.1 Common M etric Types .. 2-5
2.4.2 Comparison of Size M etric Guidance ... 2-5
2.4.3 Comparison of Requirements Status Guidance ... 2-8

* 2.4.4 Comparison of Defect Status Guidance .. 2-9
2.4.5 Comparison of Development Progress Guidance 2-10
2.4.6 M etrics Reporting .. 2-11

2.5 TOOLS AND REPOSITORIES ... 2-11
2.5.1 Tools .. 2-11

* 2.5.2 Repositories ... 2-16
2.6 BEST PRACTICES AND LESSONS LEARNED .. 2-16

2.6.1 Emphasize Simple and Limited M etrics ... 2-16
2.6.2 Focus on Local Issues ... 2-16
2.6.3 Gain Executive Commitment .. 2-17
2.6.4 Avoid Perfecting Standards ... 2-17
2.6.5 Technical Problems of M etrics ... 2-17

2.7 FUTURE PLANS AND DIRECTIONS .. 2-17
2.7.1 Research and Development ... 2-17
2.7.2 Recommendations for DoD Goals and Action .. 2-18

3. SUMMARY OF INDUSTRY METRICS DEVELOPMENT AND USE 3-1

3.1 GOALS FOR M ETRICS .. 3-1
3.2 M ETRICS IM PLEM ENTATION .. 3-3
3.3 BENEFITS ... 3-5

• 3.4 M ETRICS AND REPORTS ... 3-5
3.4.1 Basic and Calculated M etrics .. 3-6
3.4.2 M etrics Set Size ... 3-11
3.4.3 M etrics Reports ... 3-11
3.4.4 M ost Beneficial M etrics .. 3-14

* 3.5 TOOLS AND REPOSITORIES ... 3-14

ix

3.5.1 T ools .. 3-14
3.5.2 R epositories ... 3-16

3.6 BEST PRACTICES AND LESSONS LEARNED .. 3-18
3.6.1 G oals .. 3-18 0

3.6.2 M otivation and Trust ... 3-18
3.6.3 Im provem ent Focus ... 3-19
3.6.4 Sim plicity .. 3-19
3.6.5 G uidance and Support ... 3-20
3.6.6 Issues and Problem s .. 3-20

3.7 FUTURE PLANS AND DIRECTIONS .. 3-21
3.7.1 Research and Development ... 3-21
3.7.2 Recommendations for DoD Goals and Actions 3-23

4. COMPARISON OF DOD AND COMPANY EFFORTS .. 4-1

4.1 GOALS FOR SOFTWARE METRICS ... 4-1
4.2 IMPLEMENTATION .. 4-3
4.3 B EN EFITS ... 4-4
4.4 METRICS AND REPORTING .. 4-4
4.5 TOOLS AND REPOSITORIES ... 4-5
4.6 RESEARCH AND DEVELOPMENT RECOMMENDATIONS 4-7

4.6.1 Recommended Research Toward Better Metrics Capabilities 4-7
4.6.2 Recommendations for DoD Action To Improve Measurement 4-8

4.7 CONCLUSIONS ON BASIC STUDY QUESTIONS 4-8

APPENDIX A. METRICS PROGRAMS OF DOD ORGANIZATIONS A-1

APPENDIX B. METRICS PROGRAMS OF INDUSTRY ORGANIZATIONS B-i

LIST OF REFERENCES .. Ref- I

BIBLIOG RA PH Y ... Bibl-I

LIST OF ACRONYMS .. Acro-I

x

List of Figures

Figure 1-1. Inform ation Sources and Capture ... 1-3

Figure 2-1. Size ... 2-12

Figure 2-2. Requirem ents V olatility ... 2-13

Figure 2-3. Defects .. 2-14

Figure 2-4. D evelopm ent Progress ... 2-15

Figure 3-1. Softw are Staff H ours by M onth ... 3-12

Figure 3-2. Cum ulative Softw are Staff H ours .. 3-13

Figure 3-3. Problem Resolution Tim e .. 3-15

Figure 4-1. Com parison of Reported M etrics U sage .. 4-2

Figure 4-2. Comparison of Metrics Reporting Practice .. 4-6

xi

List of Tables

Table 2-1. DoD Organizations Surveyed .. 2-1

Table 2-2. DoD Metrics Guides Examined ... 2-2

Table 2-3. Sample of Goals Stated in DoD M etrics Guides ... 2-3

Table 2-4. Form of Documents Issued .. 2-3

Table 2-5. Year of Publication .. 2-3

Table 2-6. Citation of Prior Sources as M ajor Influence .. 2-4

Table 2-7. Metrics Categories and Usage ... 2-6

0 Table 2-8. Comparison of Size Metric Guidance ... 2-7

Table 2-9. Comparison of Requirements Status Guidance ... 2-8

Table 2-10. Comparison of Defect Status Guidance .. 2-9

Table 2-11. Comparison of Development Progress Guidance 2-10

0 Table 3-1. Uses and Goals of M etrics ... 3-2

Table 3-2. Influences on Start-up of Metrics Programs .. 3-3

Table 3-3. Significant Dates for M etrics Initiatives .. 3-3

Table 3-4. Citation of Prior Sources as Influences ... 3-4

Table 3-5. Realized Benefits of Metrics Usage .. 3-6

Table 3-6. Basic M etrics Usage by Category ... 3-8

Table 3-7. Size M etrics Usage .. 3-9

* Table 3-8. Calculated M etrics Usage .. 3-10

Table 3-9. M etrics Set Size ... 3-11

Table 3-10. Most Beneficial Metrics 3-16

Table 3-11. Commercial Tools in Use .. 3-17
Table 3-12. Proprietary Tools in Use .. 3-17

Table 13. M etrics Data Storage .. 3-17

Table 3-14. Organizational Plans .. 3-22

* Table 4-1. Illustrative Taxonomy of Industry M etrics Usage ... 4-7

Table A-1. Typical RGM M etrics .. A-4

Table A-2. Candidate AM C STEP M etrics ... A-4

Table A-1. SEI's Recommended Core M etrics ... A-46

0

xiii

1. INTRODUCTION

1.1 PURPOSE

This report provides summaries and an initial assessment of the state of

development and use of computer software measurement in Department of Defense (DoD)

organizations and private companies. The survey is the first phase product of a two-phase

project. The second phase will prepare policy and research recommendations for

consideration by DoD's Director, Defense Research and Engineering (DDR&E), for the

purpose of improving the implementation of software metrics throughout DoD's weapon

system acquisition process.

1.2 SCOPE

The scope of the assessment is shown by the following basic questions that were

formulated at the outset:

"• What factors distinguish commercial and DoD practice in software metrics?

"* What problems are managers trying to address through metrics collected during

the software development process?

"• To what extent has the application of software metrics proven successful?

"• Does commercial practice reveal metrics capabilities, concepts, or tools that

could benefit DoD's software acquisition process?

• * What lessons have been learned in applying software metrics?

"* Which metrics have been most beneficial?

"* Has the use of metrics influenced the software development process or planning

of future efforts?

"* What human factors issues have been taken into consideration in applying met-

rics?

1-1

The scope also included initially a comparative assessment of DoD science and

technology programs with commercial industry needs and ongoing independent research

efforts. Results in this direction are limited by the sources available for the study and their

disclosure of ongoing research subjects.

1.3 APPROACH

Phase one results have been developed through two major sources (see Figure 1-1).
The primary information source was telephone and personal interviews conducted with
about 50 people in DoD organizations and private companies. The interviewees were

selected because they were leaders in developing and applying software metrics or were
widely knowledgeable of metrics use within their organization and closely related
organizations. As the figure suggests, interviewees for DoD usually were members of a

software engineering research or support group within a subordinate command or
engineering laboratory of a military service. By contrast, interviewees from industry
usually were members of a software engineering process improvement group attached to a
major company division devoted to one application or business domain.

For practical reasons, interviews were not done with organizations that are direct,
first-line metrics users, i.e., neither DoD acquisition program offices nor industry projects,

whether DoD contractor projects or strictly commercial projects. This is noteworthy
because use of metrics in DoD acquisition is a major study consideration. It is believed that
the persons contacted were able to describe the acquisition viewpoint and usage status in
basic terms, as well as respond well to other study questions. But this survey does not
provide detailed information about individual metrics and their implementations in today's

major DoD acquisition or industry development programs.

A second major source was a substantial collection of metrics documents obtained
from the interviewees and others. Significant documents and published articles were
reviewed to develop additional depth for answering the primary questions.

Also, some professional meetings or metrics workshops provided information,

including the Air Force Rome Laboratory's Cooperstown I Workshop, entitled
"Establishing a National Vision and Force in Software Through Measurement" [Kaman

1993].

A perspective must be given for the terms "software measurement" or "software
metric." In practice, they aren't used with much precision. For example, many metrics are
not measurements in the usual sense of mechanically determined physical values from a 0

1-2

10

00*ao. ,)

(._ ,• o ,-

•4 Z

-o_
*6

ClCu

00

Cl)
4: z

CL C-L*N 0 2

cm= ,E- 0aSo am•rzz

"" zo
0 -C

0m 0L 0

o hu

0L .

wide range of possibilities. Rather they are direct judgements made by some person, possibly

with wide latitude to choose. An example is software progress, involving a decision that a

software component's design is completed. This would be a somewhat arbitrary decision since

redesign often is involved to fix bugs found later in testing. Further, some so-called metrics in

fact are derived or aggregated from several factors, e.g., requirements stability may track

unresolved, deleted, deferred, and committed items for different software builds. Finally, many

software metrics are not peculiar to software as a technical product. Rather they are management

and work progress factors, e.g., funds or effort expended, that are useful in managing any kind

of product development. Throughout this report, the term "software metric" is used most often

and with the customary latitude indicated above.

1.4 REPORT OVERVIEW

Substantive information collected from interviews is summarized in Appendix A for

DoD organizations, National Aeronautics and Space Administration (NASA), and Software

Engineering Institute (SEI), and in Appendix B for private companies. In some cases,

information from 2 or 3 interviews for the same organization or chain of command has been

merged, yielding summary reports for 13 government organizations and 10 industry

organizations. (Summaries for four companies that required legal nondisclosure agreements are

published separately and are available only to government officials needing this information.

This information was used in this report for composite numerical summaries and to confirm

general conclusions.) The private companies are not identified by name, as agreed in order to

encourage their information disclosures. The following outline applies for each summary in

Appendices A and B.

"• Metrics and reports

"* Levels of metrics reporting across organizations

"• Tools and repositories supporting metrics collection and use

"• Best practices and lessons learned from metrics experience

"* Future plans and directions of organizations, including research

Using the summaries and pertinent documents, Chapters 2 and 3 assess the state of

practice across DoD and industry organizations, respectively, addressing the topics above.

Chapter 4 is a comparative analysis across the DoD and industry organizations, and provides

answers to the basic questions posed for the study.

1-4

S

2. SUMMARY OF DOD METRICS DEVELOPMENT AND USE

This chapter provides an overall analysis of metrics development and use, as

reflected in the 11 Appendix A summaries for DoD organizations. Table 2-1 lists the DoD

organizations and their acronyms.

The analysis aims to identify trends and conclusions that could be important in

formulating future DoD policy or research goals for software measurement. As the DoD

analysis is presented, information also may be given for comparison regarding the NASA

Software Engineering Laboratory (SEL) experience and the Software Engineering

Institute's (SEI's) metrics recommendations or research.

Table 2-1. DoD Organizations Surveyed

Organization Name Acronym

Army Armament Research, Development, and Engineer- ARDEC
ing Center

Army Communications - Electronics Command CECOM
Army Missile Command MICOM
Army Operational Test and Evaluation Command OPTEC
Naval Air Systems Command NAVAIR
Naval Air Warfare Center (summarized with NAVAIR) NAWC
Naval Undersea Warfare Center NUWC
Air Force Materiel Command AFMC
Air Force Electronics System Center ESC
Air Force Rome Laboratory RL
Defense Information Systems Agency DISA
Joint Logistics Commanders JLC

Metrics have existed and been of interest nearly as long as the software field. For

example, a history [Sackman 1967] of the Semi-Automatic Ground Environment (SAGE)

project provided some of the earliest metrics on large-scale DoD software development.

Some of the organizations contacted in this study can cite metrics experiences dating back
that long. Most of their efforts have been motivated by the importance of software in

defense acquisitions, problems encountered with software when acquisitions enter the

2-1

system testing phase, and need for development processes that incorporate process and

product measurement.

All of the DoD organizations are engaged in evolving and implementing software 0

metrics to serve software development and acquisition management. DISA, JLC, and

AFMC now are jointly involved in developing a software metrics guide under JLC

auspices, and other organizations already have issued guidance. The guidance documents

define and recommend (implicitly or explicitly) a preferred set of metrics. Table 2-2 0

describes the metrics sets and guides examined in this survey. More analysis of these

metrics sets is given later in this chapter.

Table 2-2. DoD Metrics Guides Examined

Source Reference to Name Used Here for the
Organization Metrics Guide Metrics Set

Army [Army 1992] STEP (Software Test and
Evaluation Panel)

Air Force [SAF/AQ 1994] USAF

CECOM [Dyson 1991] CEMSM (CECOM Executive
Management Software Met-
rics)a

ESC [Schultz 1988] ESC

MICOM [MICOM 1991] MICOM

NAVAIR [NAVAIR 1992] NAVAIR

NAWC-AD [Rozum 1992b] NAWC

NUWC [McGarry 1992a] NUWC

a. This metrics set was developed prior to the Army's STEP set and no longer is
CECOM's primary recommendation; see [CECOM 1993].

2.1 GOALS FOR METRICS

Goals to be met through metrics are stated in different ways, as shown by the sample

of statements in Table 2-3 taken from metrics guides issued by DoD organizations. A few

of these are more definite than others, but most of them signal vague or broad goals by using

terms such as "visibility," "insight," or "indications." Most organizations recognize that

metrics are only indicators that may assist project monitoring and management decision-

making. Lessons learned (see Section 2.4) reinforce this view.

2-2

Table 2-3. Sample of Goals Stated in DoD Metrics Guides

* Early indications of potential software development problems.
* • Visibility to verify the current status of software development.

* Determine and monitor software maturity and readiness for test.
* Visibility and control of software development within a program.
• Management insight into all aspects of the development process & products.
* Insight into software development processes or process improvement efforts.

* • Demonstrate achievement of required level of functionality and maturity.
* Development process assessment, with increased quality of deployed software.
* Management insight into developmental status and long-term supportability.
* Consistent and quantifiable insight into software aspects of system development.

* 2.2 METRICS IMPLEMENTATION

Table 2-4 and Table 2-5 tabulate the nature of guidance documents produced by the

DoD organizations so far and the year that the most current guidance was issued.

Table 2-4. Form of Documents Issued

Number of Number Providing
Form of Metrics Documents Issued Organizations Contracting

(Out of H) Guidance

Research & study reports, or draft 4 0
reports or guides

Concise guides describing recom- 4 0
mended metrics and application expe-
rience

Extensive handbook for practice with- 3 3
in acquisition management

Table 2-5. Year of Publication

* Year Range Number of Organizations
(Out of 11)

1985 or earlier 1

1986 through 1989 1
• 1990 or later 9

From this data and other information about the current thrust of these organizations

(see Sections 2.4 and 2.5), it is evident that software metrics are still evolving with respect
0

to both technical content and implementation in practice.

2-3

Given the significant history of metrics research and experience, it is worth asking

whether certain technical precedents have primarily influenced recent metrics efforts.

Table 2-6 identifies prior work that is claimed as influencing the DoD organizations

contacted. Multiple citations by one or more organizations occur in this table, but it shows

no dominance by one or two precedents.

Table 2-6. Citation of Prior Sources as Major Influence

Prior Document or Effort Number of Citations

Software Engineering Institute metrics, e.g., 1
[Rozum 1992a], [Carleton 1993b]

SEI Capability Maturity Model for Process 3 •
Improvement [Humphrey 1987]

Air Force Systems Command Pamphlets 800-14 4
or 800-43, or Army Materiel Command Pam-
phlets P 70-13 or P 70-14

Rome Lab software quality factors [RL 1985] 3 0

NASA SEL [McGarry 1993] 2

Army STEP metrics [Army 1992] 3

Another consideration in metrics implementation is whether an organization by

policy has required software metrics to be collected and used to monitor acquisition efforts.

Among DoD organizations contacted, there are three such cases. This includes two

Service-wide policies (Army mandate of the STEP metrics and the Air Force software 0
metrics policy), and NAVAIR's policy for its AIR-546 organization. Two other DoD

organizations indicated that a draft policy formulation was being considered. However,

four stated that collection and use of software metrics should remain an option for program

managers, with an acceptable policy providing only guidance to program managers. 0

2.3 BENEFITS

Only a few of the interviews and associated documents provided detailed evidence

of widespread application and benefits from recommended metrics. ARDEC, ESC, NASA,

and NUWC provided clear evidence by citing specific acquisition programs or displaying

actual metrics data from specific programs. NASA, in particular, uses the convincing

technique of presenting actual metrics from specific programs to illustrate and explain its

metric recommendations and their use.

2-4

Several organizations, including those involved in implementation through policy,

cited difficulties and opposition encountered in transitioning their recommendations into

I acquisition practice.

Regarding aid to program management, software metrics are unlikely to provide the

earliest information for detecting problems such as an unfulfilled milestone. Because of

both collection and trending time lags, indications from metrics usually lag the actual
0 emergence of problems. Nevertheless, quantitative metrics data is valuable for

foreshadowing risks [Fife 19931, such as likely missing a future milestone, and assessing

their potential impact on program success.

* 2.4 METRICS AND REPORTS

This section aims to assess the degree of commonality among metrics

recommended by DoD organizations as indicated by the eight metric sets identified in

Table 2-2. Two levels of commonality are considered: first the basic types or categories of
* metrics data recommended, then attributes of the precise metrics definitions recommended.

2.4.1 Common Metric Types

Table 2-7 briefly defines categories of information for which metrics are often

* defined for collection, and indicates how many of the eight metric sets include one or more

metrics for each category. Each set may include additional metrics categories not listed

here. Table 2-7 shows 10 categories of metrics that occur in at least 6 out of the 8 sets.

0P 2.4.2 Comparison of Size Metric Guidance

To look further at precise metrics defined, this and the sections to follow will

compare the definitional guidance provided for only the size, requirements, defects, and

progress categories. As an additional allowance for brevity, only five of the eight sets are

I considered, i.e., CEMSM, STEP, USAF, ESC, and NAVAIR. These were chosen because

the guidance was specific and sufficient for comparison. Table 2-8 compares definitional

factors and guidance for the size metric.

2-5

Table 2-7. Metrics Categories and Usage

NumberUsing It
Category Brief Description (Out of 8

DoD Sets)

Cost expended funds 6

Effort expended labor, including number of staff on project 8

Schedule status of key events or deliverables relative to due date 7

size of intermediate or deliverable products (code, docu-
Size mentation, requirements, no. of CSUs, no. of lines of 7

PDL)a

Progress status of software components such as designs, code, andtest cases, procedures, and reports

Defects defects and software change requests 8

Inspections information on the process of inspecting software products, 0such as effort expended, defects identified

Requirements status of requirements, requirements changes and their 6impact

Software design stability, attributes of design or code such as corn-
Quality plexity, reliability, maintainability, flexibility
Customer
Satisfaction customer perception of the software product 0

Cycle Time duration of specific types of development tasks 6

ComputerUtilization utilization of target machine resources 7

Development status, utilization, and maturity of development tools, pro-
Environment cesses, and methodologies

ReleaseCapability functionality delivered per build or release 3Cproduct

Performance for example: speed, throughput, reliability 0

Staffing number of staff by skill or experience level, unplanned staff 2
losses, training needs & accomplishments of staff

Reuse amount and impact of reuse 5

a. CSU -Computer Software Unit; PDL - Program Design Language.

2-6

Table 2-8. Comparison of Size Metric Guidancea

Included in

N
S U A

Size Metric Guidance E EM T S S V
M E A S A

•M P F I

R

Specifies Source Lines of Code (SLOC) for measuring size * * * * *

Admits or recommends additional or alternative sizing metrics * *

0 Specifies basic criteria for counting SLOC * * *

Defines extensive SLOC counting options for multiple languages *

Admits or recommends project tailoring of SLOC counting rules * * * *

* Defines data declarations, but not comments as part of SLOC * * * *

Recommends distinguishing new, reused, & modified SLOC * * * *

Advises on risk indicated by SLOC variance over life cycle * *

Advises on collection & reporting events or intervals * * * *

a. The asterisk (*) denotes that the information is included or the criterion met A blank space de-
notes it has not been included or met.

There is a marked difference between the SEI approach adopted in the Air Force

* policy and that of the other metric sets in this table. The other sets give rather basic defini-

tions of how SLOC should be identified and counted (ESC's report has somewhat more

guidance than other documents). The underlying concept of these other sets is that a using

organization will be able to refine and specify the SLOC definition in order to use a size

0 metric reliably. However, SEI highlights a multitude of factors and programming language

dependencies that may be brought into play for prescribing how to count SLOC. Instead of

specifying preferred rules, SEI provides descriptive forms so that each organization can

specify precisely what shall be included and excluded in counting SLOC. Even embedded

0 comments, which are to be left out for the other metric sets, are considered countable in

several different categories in the SEI guidance. This perspective implies that standardiza-

tion of counting rules is considered difficult to achieve. The other metrics sets also do not

demand standardization

0

2-7

0

Of these five metric sets, only the USAF set suggests an alternative to SLOC, i.e.,

function points, as the appropriate size metric. However, the CEMSM set does include

produced documentation page count as an additional size metric, but with minimal 0
guidance on its interpretation or monitoring.

2.4.3 Comparison of Requirements Status Guidance

Requirements status metrics serve to monitor requirements growth and change over

the development life cycle. Table 2-9 lists and compares definitional factors and guidance

for requirements status.

Table 2-9. Comparison of Requirements Status Guidancea
0

Included in

NCS U A
Requirements Status Metric Guidance E E

M S V

S E A C A
P F I

R

Specifies requirements count for monitoring growth & change * * * *

Defines criterion for identifying a countable requirement * 0

Requires change request reports * * * *

Recommends impact or priority classification of change requests * * * *

Requires SLOC impact assessment *

Requires change monitoring for each CSCI or CSUsb * * * *

Advises assessment on monthly basis * * * *

Advises on risk or action indicated by trends over life cycle **

Advises on collection & reporting events over life cycle * * * *

a. The asterisk (*) denotes that the information is included or the criterion met. A blank space denotes
it has not been included or met.
b. CSCI - Computer Software Configuration Item; CSU Computer Software Unit.

Requirements are monitored through two basic data inputs. The first is a count of

requirement statements in the software requirements specification or its amendments

(commonly, the "shall" statements from the DOD-STD-2167A Software Requirements

2-8

0

Specification or SRS document). The second are monthly records of change requests for

requirements.

0 The CEMSM and ESC metric sets are very similar in their guidance about this

metric. Status of change requests must be monitored and they should be classified to

indicate potential impact on effort. The STEP guidance goes further by requiring impact to

be assessed in terms of SLOC modifications

2.4.4 Comparison of Defect Status Guidance

A defect status metric serves to track the number and age of unresolved issues

identified during software testing. The metric gives insight into quality and the developer's
* capability to resolve and fix defects quickly. Table 2-10 compares definitional

characteristics and guidance.

Table 2-10. Comparison of Defect Status Guidance'

0 Included in

N~SU A

Defect Status Metric Guidance E EM T S S V
E A A

* pF CI
R

Specifies count of "open" or unresolved defects as status metric * * * * *

Specifies criteria or method for identifying defects for reporting

Recommends content of defect or trouble reports * *

Specifies defect closure requirements, e.g., regression testing

Describes interplay of testing depth and defect discovery *

0 Recommends tracking defects at CSCI or lower CSU levels * * * *

Advises on priority classes for defect tracking * * *

Advises monthly collection and assessment interval * * * *

* Advises on coupling collection to test & rework effort *

Advises on risk or action indicated by defect trends * * *

a. The asterisk (*) denotes that the information is included or the criterion met. A blank space de-
notes it has not been included or met.

2-9

0

Despite a possible impression from Table 2-10 that there is little commonality, the

five sets, in fact, identify the same metric, a count taken periodically (usually monthly) of

so-called "open" or unresolved defects. However, Table 2-10 does indicate a significant 0

disparity in the guidance provided by each source for applying this metric. In fact, all of the

sources provide minimal guidance and requirements. A particular weakness is lack of

guidance for identifying defects and their status in relation to testing, diagnosis, repair or
rework, and retesting. Perhaps this is considered beyond the scope of metrics definition, but 0

it is crucial for consistent collection and interpretation of defect reports.

2.4.5 Comparison of Development Progress Guidance

A development progress metric serves to monitor continuing development progress 0

in terms of the software product or its components. Table 2-11 compares guidance on this

metric. The USAF set does not have this metric. All others use a count of software product

units such as CSCIs or CSUs that have completed a designated life cycle stage.

Accomplishing a walkthrough or inspection is a significant progress stage in one set. 0

Table 2-11. Comparison of Development Progress Guidancea

Included in

NC N~SU A0
Development Progress Metric Guidance E T s E V

M T S A
S E A C A

P F I

R

Specifies progress as count of units in prescribed stages * * * *

Denotes software status as a DOD-STD-2167A stage or equiva- * * ,
lent

Specifies exit criteria for confirming status in each stage * •

Specifies progress as SLOC delivered via configuration control *

Recommends walkthrough or inspection as important unit stage *

Recommends tracking progress for CSCI or lower CSU levels * * * *

Advises monthly collection and assessment interval * * * *

Advises on risk or action indicated by progress trends * * *

a. The asterisk (*) denotes that the information is included or the criterion met. A blank space de-
notes it has not been included or met .

2-10

2.4.6 Metrics Reporting

DoD organizations seldom report metrics beyond a program manager to higher

. command or organizational levels. For reporting to a program manager, or for that

occasional briefing to other parties on metrics applications, graphic displays are essential.

Typical displays are illustrated here. The common use of estimated SLOC is to track its

changes over time and correlate the estimates with other engineering and programmatic

* information, e.g., requirements status. Figure 2-1 illustrates a typical presentation

suggested for sizing data. Figure 2-2 is a typical suggestion for graphing requirements

status and volatility. Figure 2-3 illustrates a suggested graphic for tracking defects. Figure

2-4 illustrates a typical presentation of development progress information.0

2.5 TOOLS AND REPOSITORIES

The goal of this section is to describe viewpoints and trends among the contacted

organizations regarding tools for metrics collection and analysis, including data

* repositories for metrics information. Repositories take on a special interest if they are

populated and made accessible across many acquisition programs, to assist in software

technology planning or acquisition planning and analysis.

* 2.5.1 Tools

The information available from DoD organizations about preferred tools, tool

capabilities, or tool needs was limited. This was somewhat surprising since the need for

non-intrusive data gathering is often cited. On the other hand, NASA SEL stated that

sufficient data could be collected readily on paper forms filled out once a week. In fact,

much of the information listed in Table 2-7 comes directly from human observation and

judgement (e.g., what is the state of a given CSU). Only a few of these metrics would

involve more effort than occasional manual data recording. Exceptions would include

0 automated analysis of source code statements for certain quality factors and measurement

of product performance or throughput. Several organizations stated that widely available

spreadsheet computer programs for personal computers serve as their primary tool. A

commercial database package also was cited as an appropriate and successful tool for a

* metrics data repository.

Nevertheless, some tool support and guidance would help organizations to accept

and practice a common metrics approach. The Army STEP program for instance has

developed a database capability that is being disseminated to Army organizations to assist

2-11

00

o 0)

co

...................I -----.. .

'IZVI

.. V0........ .

;10

Z
____ __ _ ____ ___ ___ I'll _X

;00
X~

Z

(x)Jos u~~o.Z

0 r0

rd-

00C

sluiunih- jojqtn. E -

C4Q0

CA C_

- I I -

2-013

00

000

2-14

00

000

201

collecting and storing metrics data for local use. Several organizations mentioned a future goal to

investigate tools and make recommendations to users.

2.5.2 Repositories

Several organizations retain metrics data from projects for research and analysis purposes,

but only three (NASA, MICOM, and SEI) have investigated or prototyped computer repository

designs to collect metrics from many projects. Most sources expressed serious opposition to the
idea of centrally collecting metrics information. The general fear is misinterpretation and misuse

of such data.

The NASA SEL provides one example of collecting metrics data from many projects and
using it to establish experience models and performance norms for guiding future programs, rather 6
than controlling current programs or evaluating program managers.

2.6 BEST PRACTICES AND LESSONS LEARNED

Observations expressed by the interviewees on best metrics practices and lessons learned

are paraphrased and consolidated in the following sections, with major themes identified at the

beginning as part of the section headings.

2.6.1 Emphasize Simple and Limited Metrics

Metrics-experienced organizations have discovered that their early efforts were mistaken
in asking for too much data when they were uncertain of its purpose and value to them. Today,

recommended metrics may collect less than half of the data that was sought in prior years.

Collecting data is difficult and it is important to have a simple, goal-directed metrics program. 0

It is also important to provide guidance on practices of applying software metrics, rather

than just defining the desired metrics.

A potential barrier to measurement is that companies are not willing to relinquish project

and business data that may disclose their competitive advantages or way of doing business. No
appropriate solution was identified, but limiting and simplifying required data may be part of one.

One interviewee also recommends emphasis on product metrics, such as defects, as more

relevant and effective than process metrics such as staffing or process maturity. 0

2.6.2 Focus on Local Issues

Interviewees recommend adopting small metric sets and collection technology that is

appropriate to improve a specific development project. It was argued as well that organizations

2-16

should be compared relative to their environment or organizational context. The conclusion

drawn is that metrics must be defined for project-specific suitability and so they would not

be effective for DoD-wide research needs.

2.6.3 Gain Executive Commitment

Senior executives such as Program Executive Officers (PEOs) seldom are directly

interested in software, since their purview is projects or systems as a whole. Yet it is
important for metrics progress and implementation to gain senior management

commitment. There is much experience to show that DoD is not willing to pursue metrics
data collection due to cost. DoD program offices typically delete software metrics

requirements from contracts.

2.6.4 Avoid Perfecting Standards

Past experience does not bode well for a goal of standardizing improved metric
definitions. As one contact reported, after you have good definitions, no one follows them.

There was considerable sentiment that time spent perfecting software metric definitions is

not worthwhile.

2.6.5 Technical Problems of Metrics

A few comments also were made that are limited to specific technical

considerations about metrics and their collection. For one, having several individuals judge
a complex factor on an uncalibrated scale, such as 1 to 5, is not recommended because the

outcome is not repeatable over time. Other comments involved Ada code quality factors.
Cyclomatic complexity and Halstead complexity metrics were considered ineffective for

improving Ada: programs. Contractors were considered as already delivering better Ada
metrics via tools such as Adamat than what are formulated in current DoD metrics sets.

2.7 FUTURE PLANS AND DIRECTIONS

This section identifies metrics research areas suggested or planned by the DoD

sources and also their recommendations on DoD goals or actions regarding metrics in the

acquisition process.

2.7.1 Research and Development

One contact had the opinion that too much research already had been put into

metrics. The need now is infusion of measurement into the practitioner's world (e.g.,

provide guidance on how to use metrics data and determine its benefits).

2-17

The following suggestions addressed the need for better metrics than what is now

available:

"• Better measure of software reliability. Reliability of a module in testing phase 0

may not be an accurate measure of its reliability in an operating environment.

"* Better quantitative metrics for evaluating software code, other than complexity.

"• Better requirements metrics in addition to stability metrics.

"• More understanding of the systems engineering process and different ways to

analyze problem reports (source of problem, when identified, necessary correc-

tions).

The need for better tools was mentioned:

"* Tools to automate collection, analyses, and reporting of metrics.

"• Tools for software development that also collect metrics (e.g., configuration

management (CM)).

And suggestions were made for other research in support of measurement:

"• Better understanding of relationships and impacts of models (e.g., object orient-

ed design vs. functional decomposition, errors vs. different testing strategies, 0
changes in specifications vs. changes in designs).

"• Need more operational data to understand how development efforts impact the

maintenance phase of the life cycle.

"• Greater awareness of goals and progress among current metrics research pro-

grams (e.g., SEI, NASA, ARPA).

2.7.2 Recommendations for DoD Goals and Action

There was little support for standards or DoD-wide policy, but more support for an

approach that would define recommended metrics only in high-level terms and then

provide guidance for organizations to tailor those descriptions for each program's needs.

(This is similar to the direction represented in SEI's current approach [Carleton 1992] and

in CECOM's current guidebook [1993]. However, it was also remarked that the SEI

approach is "too grandiose and hard to use.")

The need to validate metrics was stated by a few sources. Before a national effort is

established to collect metrics, they say that metrics data quality and consistency needs to

2-18

be proven within pertinent application domains. Rather than conceiving new measurement

frameworks or models, there is a need to develop procedures for using existing models and

to refine them from lessons learned. The following opinions were also expressed:

• A guidance and contracting package is needed to easily implement measure-

ment during the software life cycle.

* Metrics should be tied to SEI process maturity levels.

* Metrics need to be added to Defense Systems Management Collage (DSMC)

teaching subjects.

2-19

0

3. SUMMARY OF INDUSTRY METRICS DEVELOPMENT AND USE

This chapter provides an overall analysis of the software metrics programs of 17

organizations within 15 different companies. Of the 17 organizations, 10 are DoD

contractors and 7 are commercial product producers. Four of the seven commercial product
organizations are part of large companies that also have divisions involved in DoD

contractor work. Throughout this chapter, the trends identified and conclusions drawn

apply to the group as a whole unless a difference in pattern between DoD contractors and

commercial organizations is specifically noted.

0 The intent of the industry survey was to focus on organizations with mature metrics
programs so as to allow the DoD to capitalize on their experience. Fourteen of the

seventeen organizations interviewed reported that the use of metrics was a routine practice
within their organization. In comparison with the level of metrics usage reported in the

* 1992 Software Measurement Practices in Industry survey [SPRC 1992], these

organizations qualify as being leaders in the use of metrics.

The amount and depth of information for the different organizations varies, based

in part on their willingness to share detailed information that is often regarded as
0 proprietary. All of the available information has been made use of in the analyses

performed in this chapter. Appendix B contains metrics program summaries for 10 industry
organizations. Summaries of the other organizations were omitted for various reasons,

including agreements to treat information as proprietary, newness of the metrics program,
0 and scantiness of available information.

3.1 GOALS FOR METRICS

Of the organizations interviewed, three gave information primarily on their
* corporate-level metrics set, that is, on the metrics set that is reported to the corporate-level

of the company. The remainder gave information on the metrics set used at the project level.
Regardless of which metrics set was described, many gave information on the goals and

usage of metrics at several levels of their organization.

Table 3-1 shows the goals or uses to which metrics are put at different

3-1

organizational levels and the number of organizations espousing each goal at the given

organizational level (note that most organizations reported multiple goals). Goals that are

similar have been grouped together and their counts combined.

Table 3-1. Uses and Goals of Metrics

Numbers Reporting at

Uses/Goals of Metrics Project Divisional Corporate 0
Level Level Level

Project management
Risk management 14 1 1
Project status summary

Cost estimation
Schedule estimation
Estimation model calibration 10 3 1
Estimation process improvement
New proposal estimation

Identifyf/Track process improvement
Validate process improvement
Increase SEI Capability Maturity Model (CMM) 6 4 4
level
Benchmark

Improve product quality
Reduce costs
Increase productivity
Improve cycle time 8 9 5
Improve delivery time
Increase on-time delivery 0
Provide basis for management by objectives

In looking for trends, the data should be examined within an organizational level

because many more organizations gave goals for project level metrics than did for 0

divisional or corporate level metrics. At the project level, the heaviest emphasis is on

project management and estimation goals, although there is interest in process
improvement and other business improvement objectives as well. At the divisional level,

there is still some emphasis on estimation and process improvement, but over 50% of the 0

emphasis is on the group of specific business improvements that affect profitability. At the

corporate level, process improvements and specific business improvements are almost

exclusively emphasized. These trends hold in both the DoD and strictly commercial

organizations. 0

3-2

3.2 METRICS IMPLEMENTATION

Several influences have factored in the establishment or revitalization of the metrics

- programs reported on in this study, as shown in Table 3-2.

Table 3-2. Influences on Start-up of Metrics Programs
mInfluences Number of Programs

Metrics Program CitinlInfuenc
i Citing Influence

Benefits to be gained 6

Software process improvement efforts 5

SEI assessments 2

Quality initiatives 2

Integrated product teams 1

While several of the metrics programs originated in the 1980s or before, eight have

started within the past five years. Table 3-3 shows startup dates for the various metrics

initiatives. Different initiatives started with different activities. Some started in conjunction
with the startup of software process improvement activities. Others started by defining a

metrics set, forming a metrics working group, creating a metrics handbook, or simply by

starting to use metrics.

Table 3-3. Significant Dates for Metrics Initiatives

Number Initiatives
Dt Started

before 1978 2

1978 -1988 3

0 1989 1

1990 4

1991 2

1992 or later 1
0

Ten of the programs have policy requiring the use of metrics, six have documented

corporate metrics standards, six have documented organizational-level metrics standards,

and several have documents providing guidance for the collection and reporting of metrics.
Only one organization reported that they did not use any form of metrics document.

3-3

0

Most of the organizations reported the early formation of a group focused on

metrics. This group typically provided metrics support to project groups in one or more of

the following ways: metrics training, tool development, repository maintenance, and high-

level analyses of metrics data across projects. Often the metrics group was composed of

representatives from across the organization, who were instrumental in bringing metrics

practices back to their home group. Very often the metrics group authored the metrics

standards and guidance documents, incorporating project metrics experience into later

revisions. The formation of such a dedicated group appears to be a "best practice" across

the organizations interviewed.

As far as the metrics sets themselves, Table 3-4 shows the technical influences

reported. The Goal-Question-Metric paradigm is more influential than the four explicit

citings of it suggest; several additional interviewees stated that their metrics are chosen to

support the achievement of organizational goals. The table suggests that government-

sponsored metrics efforts, especially the SEI CMM, have been a significant influence on

the metrics sets adopted by industry. A few metrics sets were mentioned as being similar to

an organization's own metrics set, although not a direct influence on it. These include the

acquisition metrics set described by Rozum [1992a], the management metrics set described

by Schultz [1988], and the NAVAIR metrics set [1992].

Table 3-4. Citation of Prior Sources as Influences

Number of
Prior Document or Effort Cimbtion

Citations

Software Engineering Institute metrics recommendations 2
(e.g., [Carleton 1992])

Software Engineering Institute Capability Maturity Model 6
for Process Improvement [Paulk 1993]

Air Force Systems Command Pamphlets 800-14 or 800-43 1 0
[AFSC 1987] [AFSC 1986]

Rome Labs software quality factors [RL 1985] 1

Goal-Question-Metric Paradigm [Basili 1984] 4

Mitre Report [Mitre 1985] 1 0

Quantitative Software Management (QSM) Metrics [Put- 1
nam 1992]

0

3-4

0

0

3.3 BENEFITS

Companies start up metrics programs because they are convinced that metrics will

be beneficial to them. Any metrics program of long standing must be presumed to actually

deliver benefits beyond their cost, or they would not be supported. The trend among the

organizations interviewed was toward an increased usage of metrics. Support and

enthusiasm for metrics usage appears to be strengthening at the highest levels of their

organizations.

The organizations reported realized benefits from metrics usage (Table 3-5). The

second column of the table shows the number of organizations reporting a particular

benefit. Some of the entries are somewhat redundant, but are included to reflect the way the

benefit was stated. The benefits are derived not from metrics per se, but from the actions

that are taken in response to the information provided by metrics. The metrics are crucial

to provide direction and feedback, but without action no benefits will occur. A few

organizations were able to report on benefits in numerical terms.

* A 30% reduction in defect rate found during formal test; 60% reduction found

during system test.

* A 50-times reduction in defect density of released software over three and a half

years.

* Progress rate improvement from 50% to 95% in three and a half years (a

progress rate of 50% means that it takes twice as long to complete a project as

originally estimated).

One organization reported the following return-on-investment information:

software process improvement (resulting partly from metrics information) increased

productivity 12% and saved $1.26 for every $1.00 invested, from 1991 to 1993. Another

reported that the cost of the metrics program in two divisions was 1% of personnel costs.

3.4 METRICS AND REPORTS

This section will present information about the basic and calculated metrics in use

in the organizations surveyed, metrics set sizes, metrics reports, and the metrics that

organizations found most beneficial.

Different organizations use the word "metric" differently. One organization might

refer to a LOC count as one metric, while another might refer to a graph containing

estimated, budgeted, and actual LOC counts for developed, reused, and commercial off-

3-5

the-shelf (COTS) software as one metric. To bring a little consistency to comparisons

between different metrics sets, the following definitions for basic metrics, calculated

metrics, and reports will be adopted:

" Basic metric" will be used to denote a measurement of something real, that can

be directly measured. Budgeted or estimated values are not counted as basic

metrics because they aren't measuring anything that exists.

" "Calculated metric" will be used to denote a function of two or more different

basic metrics. Productivity and error density are two common calculated met-

rics. Note that a percentage is considered to be a basic metric because it is a

function (ratio) of two values of the same basic metric.

" "Reports" are collections of basic metrics, calculated metrics, and/or budgeted,

estimated, or other non-measured information appearing together.

Table 3-5. Realized Benefits of Metrics Usage

Number of
Benefits Programs Citing

Benefit

Calibration of cost models 2

Estimating new proposals or planning new projects 5
(effort, time, quality)

Basis for policy on sizing of new projects 1

Determining best mix of people 2

Assessing impact (for customers) of requirements I
changes

Assessing impact of different design techniques 1

Basis for process improvement 4 0

Improved ship-acceptance criteria 2

Cost reductions due to improved product quality 1

Motivation for good performance from projects (cor- 1
porate-level benefit)

3.4.1 Basic and Calculated Metrics

When broad categories of metrics are considered, commonality of measurements

3-6

0

used in different organizations is apparent. At the detail level of individual metrics,

however, there is a great deal of diversity. Table 3-6 shows 17 categories of basic metrics,

the total number of organizations using one or more metrics in the category (out of 17 total),

the number of DoD contractors using one or more metrics in the category (out of 10 total),

the number of commercial organizations using one or more metrics in the category (out of

7 total), and the number of usages of metrics in that category across all the organizations.

The number of usages of metrics in a given category is counted as the number of distinct

metrics within that category used by an organization. Thus the first entry in the table gives

the following information: 12 out of 17 organizations are using some form of cost metric.

That number includes 8 out of the 10 DoD contractors and 4 out of the 7 commercial

organizations. Further, the number of usages of all forms of cost metrics, across all

organizations, is 13. Note that a few organizations reported their metrics usage only by

broad category (e.g., "we measure cost"), in which case their usage in that category is

counted as 1.

Table 3-6 shows that most organizations are using cost, effort, schedule, size, and

defects metrics. The fifth column indicates that defect metrics are the most numerous,

followed by size and progress metrics.

Examination of Table 3-6 shows that there may be some differences between DoD

contractor and purely commercial organizations in the patterns of their metrics usage.

* Progress: All but two of the DoD contractors use progress metrics while only

one commercial organization uses them.

* Requirements: Six out of seven of the organizations using these metrics are

DoD contractors. A very plausible explanation for this pattern would be greater

instability in DoD requirements versus commercial product requirements.

0 Computer utilization: All of the organizations using these metrics are DoD con-

tractors. Further, 80% of all DoD contractors surveyed use this category of met-

ric.

* Release capability: These metrics measure the amount of functionality deliv-

ered per release or build. All of the organizations using them are DoD contrac-

tors.

• Staffing: All of the organizations using these metrics are DoD contractors. Of

all the DoD contractors, 90% use this category of metric.

3-7

Table 3-6. Basic Metrics Usage by Category

Metrics Total No. of No. of DoD No. of
Category Organizations Contractors Commercial

Cost 12 8 4 13

Effort 13 9 4 24

Schedule 17 10 7 23

Size 15 10 5 38

Progress 9 8 1 48

Defects 16 9 7 69

Inspections 5 4 1 6

Requirements 7 6 1 32

Software Quality 4 2 2 9

Customer
Satisfaction

Cycle Time 6 3 3 11

Computer 8 8 0 42
Utilization

Development 8 6 2 29
Environment

Release
Capability

Product
Performance

Staffing 9 9 0 19

Reuse 1 0 1 3

Table 3-7 expands on the usage of size metrics by listing the variations encountered
and the number of organizations using each variation. It illustrates the diversity in metrics

definitions and usage among commercial organizations.

The category of defect metrics contains the greatest diversity of individual metrics.

The basic defect metric is a count of the number of problem reports, but this metric is

refined in various ways. First, problem reports, which refer to any type of requested change

including enhancements, may be distinguished from defects, which refer to actual

implementation errors or bugs. Other distinguishing factors include status (e.g., open,

3-8

0

approved, implemented, closed), age (calendar time from initial report to closure or to

date), the phase the error was introduced (e.g., requirements, design, code, problem fix), the

* phase the error was detected (with some organizations placing special emphasis on errors

detected after release by customers), and the severity (or priority) of the problem. Very

often, multiple factors are used to refine a defect count. Some examples of these types of

defect metrics include number of open problem reports by severity level, number of

* customer-reported problem reports with age greater than x months, and number of open

problem reports found during integration test by priority.

Table 3-7. Size Metrics Usage

* Size Metrics in Use Number of

Uses

Size (no further details given) 2

Number of Requirements (typically 'shalls') 2

* Number of Design Units 2

Number of Lines of PDL 1

Number of LOC (generic) 8

* Number of Developed, Non-Comment Logical LOC 4

Number of Modified, Non-Comment Logical LOC 2

Number of Reused Non-Comment Logical LOC 3

Number of Unchanged Non-Comment Logical LOC I

Number of Maintained Non-Comment Logical LOC 1

Number of Delivered Non-Comment Logical LOC 1

Number of COTS Non-Comment Logical LOC 1

Number of Developed Non-Comment Physical LOC 1

Number of Reused Non-Comment Physical LOC 1

Number of COTS Non-Comment Physical LOC 1

Number of Total Assembler-Equivalent Non-Comment Physical LOC 1

Number of Function Points 5

Documentation Size 1

3-9

Table 3-8 lists some of the calculated metrics used by the organizations, along with

their usage counts. Error density and productivity metrics are the two single calculated

metrics most commonly used. The majority of the calculated metrics deal with defects.

Metrics are collected periodically, with monthly collection being most often reported.

Corporate-level metrics are likely to be collected less frequently, e.g., quarterly. In some

cases, frequency of collection varies based on the particular metric while one organization

bases it on the CMM maturity level of the project.

Table 3-8. Calculated Metrics Usage

Sample Calculated Metrics in Use Number of
Sampe ClcultedUses

Error density 14

Productivity 7

Schedule variance (e.g., budget for work performed minus budget for
work scheduled)

Cost variance (e.g., budgeted cost of work performed minus actual cost 2
of work performed)

Customer severity days (severity of customer problem multiplied by days 2
open, summed by severity level)

Problems per user-month 2

Cycle time rate (e.g., calendar months divided by code size) 2

Effort estimation accuracy 1

Schedule estimation accuracy (actual duration divided by estimated dura-
tion)

Review effectiveness 1

Mean time to defect after release (takes into account exposure time) 1 0

Defect containment effectiveness (no. of defects removed after internal
review but before release divided by (no. of defects removed after inter- 1
nal review but before release + no. of defects remaining after release)

Phase containment effectiveness (no. of defects found during phase 0
review divided by (no. of defects found during phase review + no. of 1
defects found after phase review)

3-10

9

Granularity of the metrics collected also varies. For example, size can be collected

for an entire software product, for each CSCI, for each CSC, for each CSU, and so forth.

* Effort and cost may be broken out by software life cycle product; productivity by language.

Defect density may be collected over a whole life cycle or broken up by life cycle phase

(requirements, design, code, test). Often, granularity decreases as reports are generated for

higher levels of management. Granularity also may be affected by organizational maturity.

3.4.2 Metrics Set Size

Variations in metrics set size are shown in Table 3-9. To be consistent across

organizations, metrics set size was determined by counting the number of basic and

calculated metrics, as defined above, contained in the metrics set. The result rarely

coincided with the size of the metrics set as reported by the organization. Fairly exact

counts were possible for seven organizations, based on internal documents. Their counts

are shown in the second column of the table. Their counts plus the counts for eight

additional organizations that described their metrics set during interviews are shown in the

third column. Data for two organizations were too incomplete to count.

Table 3-9. Metrics Set Size

Number of Metrics Number of Metrics
Size Range Sets (exact count) Sets (total count)

1-10 0 4

11-20 0 3

0 21-30 1 1

31-40 3 4

41-50 3 3

0 3.4.3. Metrics Reports

In some organizations, metrics are reported in combination with planned, budgeted,

estimated, or otherwise generated values for the same objects. The first two of the three

sample reports below illustrate the use of metrics in combination with planned values.

Metrics reports often summarize a large amount of basic measurement data in a

manner that aids in the comprehension of basic trends. Figure 3-1 and Figure 3-2 show

sample staff hour reports, broken down by month. The planned number of staff hours is
* plotted against the actual numbers of straight staff hours, compensated overtime staff hours,

3-11

C) E

~O ZE
E AON
0 SE

IJDO

oniv

Nflf

0o

0

0

3-12)

13

o -fi2

10

0

3fl13

and uncompensated overtime staff hours.

The report in Figure 3-3 shows problem resolution time. The histogram portion

shows the number of open problems per month, broken down by the length of time they I

have been open. The numbers along the left axis provide the scale. The line plots show the

average number of days to reach a solution for problems that have been closed during the

month, broken down by problem severity level. The number along the right axis provide

the scale. 0

3.4.4 Most Beneficial Metrics

Table 3-10 shows the metrics and reports mentioned as being most beneficial. Some

organizations did not value any particular metrics above the others. One interviewee reit- 0

erated that the most valuable metrics would depend on an organization's goals. The metrics

shown in this table offer no surprises and indicate that basic metrics, rather than esoteric,

are considered most valuable.

3.5 TOOLS AND REPOSITORIES

This section describes the use of data collection and analysis tools and data reposi-

tories among the industry organizations contacted.

3.5.1 Tools

Tools are not universally perceived to be a problem. Some organizations are well

served by simple tools, as evidenced by the following remarks:

" Much of the required metrics set can be collected using routinely available

tools. For example, time and effort is collected from time cards and tracked

using the corporate MIS [Management Information System] tool; the current

WBS [Work Breakdown Structure] covers 90% of the information needed. The

problem reporting system contains the information needed to produce defect 0

metrics.

"• Simple tools are used. The emphasis is on keeping the data organized and using

it daily).

Others use more complex tools, but are able to purchase them (e.g., Putnam's QSM

tool set) or are able to develop them. One organization recently completed a two-year

development effort on an in-house tool to aid in data entry, metrics calculations, and chart

and report production.

3-14

0c

*r

SC

mil

H0111111

3-153

On the other hand, many organizations are not able to purchase the tools they want

and have not yet developed them. By their remarks, they identified tools as one of the major

problem areas in their metrics program (see Section 3.4.3) and an area for further research

and development (see Section 3.5).

Table 3-10. Most Beneficial Metrics

Metrics/Reports Number of

Responses

Progress indicators 2

Rate chart - planned vs. actual production of units, for all life cycle 1
phases

Time, schedule 1

Cost 2

Manpower loading 1

Software size 4

Requirements stability 1

Defects 3

Inspection Metrics 1

Resource Utilization 1

Customer Satisfaction 1

Tools are needed to collect basic data, to calculate metrics, and to generate charts,

graphs, and other forms of metrics reports. Table 3-11 shows some of the commercial tools

and Table 3-12 some of the proprietary tools currently being used for these purposes. Of

the commercial tools available, spreadsheets, databases, and cost estimation models have

the most widespread usage (scheduling tools are not perceived to be metrics tools), while

the proprietary tools most often developed are LOC counters and report generation aids.

One major problem in producing good commercial metrics tools is the large number of pro-

prietary systems and procedures with which they have to interface.

3.5.2 Repositories

Most organizations report storing their metrics data in either paper or electronic

form. Table 3-13 shows the numbers reporting usage of paper or electronic storage at either

a project level, divisional level, or corporate level. Some organizations reported storage at
multiple levels. Most electronic storage is within a database, but some storage is kept in

3-16

0

spreadsheets or flat files.

Table 3-11. Commercial Tools in Use
0

Number of
Commercial Tool usaes Ct

Usages Cited

Spreadsheets (e.g., Excel, Lotus 123) 7

SDatabases (e.g., Paradox, Oracle) 3

Cost Estimation Models (SEER, COCOMO) 4

QSM Tools: SLIM, SLIM Control, Size Planner, 1 (+1 investigation
PADS for future use)

Requirements Tracking (RTRACE) 1

Filemaker Pro 1

Harvard Graphics 1

Complexity Measures (Logiscope) 1

Table 3-12. Proprietary Tools in Use

Type of Proprietary Tool Number of
Type of Proprietary Tool _ Usages Cited

Report Generation Aid 5

LOC Counter 4

Tools That Aid in Data Entry 2

Tools That Aid in Data Collection 2

Table 13. Metrics Data Storage

Type of Project Divisional Corporate
Storage Level Level Level

Paper 0 2 0

Electronic 5 9 3

Project-level metrics data is the primary type of information stored at the project
level, although one organization also reported storage of historical data at this level. At the

divisional or intermediate level, the types of information stored include historical data,
financial data, trend analyses, divisional-level metrics reports, planned values for required

3-17

metrics, and in one case, project inspections information and problem change report

information. At the corporate level, project historical data, project characteristics data,

project cost data, and corporate-level metrics reports are stored.

Historical data provides a basis for estimating the cost, effort, and duration of new

projects. Estimations are made by examining data from past projects with similar

characteristics to the one being estimated. It is therefore important to store project

characteristics data along with historical metrics data.

The types of characteristics data reported being stored include sponsoring agency,

contract type (e.g., cost plus, firm fixed price), project size, application domain, name of

life cycle process required, standards used, development environment, implementation

languages used, and target hardware. One organization reported using 53 items of

characteristics data.

3.6 BEST PRACTICES AND LESSONS LEARNED

This section presents the best practices and lessons learned by the organizations

interviewed. The best practices recommendations have been paraphrased and organized

around five themes: goals, motivation and trust, improvement focus, simplicity, and

guidance and support. Following the best practices sections, the main problems or issues

faced by the organizations in establishing a metrics program are discussed.

3.6.1 Goals

Metrics are not the goal. The first thing that an organization must do in starting a

metrics program is to clarify its real organizational goals. The metrics program must then

be focused to support achievement of those goals. In particular, only metrics that contribute

to the achievement of organizational goals should be included in the metrics set. Only data

that is relevant to the goals should be collected, and all data that is collected must be used.

Many metrics efforts founder when the people who must put effort into collecting data see 0

that the data is not used or that it is not relevant to anything important.

3.6.2 Motivation and Trust

Motivation and trust are important and must be established. Most metrics programs

do not start off having them. Because of people's fears regarding measurement, just one

misuse of metrics data can destroy all trust that has been built up. One recommended way

to start building motivation and trust is to involve the user community in the metrics start-

up activities, including metrics set selection. This has the added advantage of bringing 0

3-18

hands-on experience to the initiative.

Motivation can also be supplied by having a metrics edict in place (the stick) and

by being able to provide quick benefits from the metrics program (the carrot). Any metrics

analysis results should be shared with the people who contributed to the underlying data

collection. To motivate someone to participate and collect data, one person recommended

using actual metrics data and showing the person how the data has been used and how it

has been beneficial.

3.6.3 Improvement Focus

Metrics data should not be used to compare dissimilar projects or separate
0 individuals. For one thing, comparisons (of productivity measures, for example) across

application domains are not valid. The large differences in the things being compared make

the comparison meaningless. Most organizations that are using historical data to estimate

new projects use only similar projects to formulate their estimations. The best comparisons
to make are to compare self against self over time.

Most importantly, a metrics program should make clear that its commitment is not

to comparison but to improvement. Problems illuminated by metrics data should be

discussed in terms of how to best remove them, and in terms of process causes rather than

people causes.

3.6.4 Simplicity

Several people recommended a small metrics set of basic measures, especially at

the start of a metrics initiative. A small metrics set lessens the impact of data collection and
reinforces a focus on the most relevant metrics. This in turn makes it easier to get buy-in

for a new metrics program.

0 Several people recommended using simple metrics. For example, using straight

defect totals was cited as being preferable to calculating defect density. Reasons given for

eliminating the LOC divisor included LOC differences among different languages and

simple confusion. Larry Putnam, president of Quantitative Software Management, warns

0 against productivity measures such as LOC/person-months and function points/person-

months because of the non-linear relationships of effort and schedule to LOC. He

generalizes by stating that ratios of metrics tend to be dangerous when used in isolation (as

productivity measures often are).

* Several best practices dealt with the idea of graduated metrics sets. Larger projects

3-19

or more mature organizations may want or need larger metrics sets. Several organizations

have evolved rather large metrics sets. One, whose organization has used metrics for over

20 years, recommends sets such as Rozum or Schultz have defined. "Anything less is not

enough to run projects."

Finally, metrics sets evolve over time, as organizations evolve and mature. Metrics

organizations should not waste time trying to come up with the perfect metrics set that

satisfies everyone. They should adopt a reasonable set that addresses their goals and let time

and experience perfect it further.

3.6.5 Guidance and Support

Most organizations have established a focus group for metrics to provide guidance

and support in several areas including training, tools, and general consulting. As a first step
in helping groups automate their data collections and analysis, one group surveyed its

company to determine which tools were already being used successfully, and then provided

this information to the projects.

One important component of guidance is to develop simple, crisp, and exact metrics
definitions, to develop guidance for metrics usage, and to disseminate this information in

documents. When people are inexperienced in metrics, they need clarity and simplicity to

be able to participate in metrics collection and usage. Documentation contributes to

uniform practices across a group and facilitates communication within the group.

3.6.6 Issues and Problems

Tools were identified as one of the largest problem areas in metrics. Many groups

expend a lot of resources in developing tools to collect data, count LOC, and generate the
reports they need. Tools that are available commercially often collect data and do analyses

that are not relevant to the organization. Tools that are not available commercially include

tools to count function points and tools that would interface seamlessly into the group's

development environment.

Several programmatic problems were mentioned. Getting buy-in for the metrics

program and for data collection in particular is difficult. There are problems with getting

subcontractors who are also competitors to share their metrics data. Complying with

different metrics requirements from different agencies also causes difficulties within an

organization.

Finally, some problems with specific metrics were mentioned: 0

3-20

0 It is difficult to predict LOC and difficult to reestimate them when requirements

change.

* LOC is not satisfactory for counting fourth generation languages (4GL) or

object-oriented languages.

Quantifying staff experience is difficult.

3.7 FUTURE PLANS AND DIRECTIONS

This section identifies research and development areas that the organizations are

addressing or recommending for consideration by some other organization to address. It

also contains advice offered to the DoD regarding the use of metrics in its software

acquisition process.

3.7.1 Research and Development

The future plans and directions reported by the organizations can be categorized as
(1) plans or ideas for progressing or evolving their metrics program, (2) recommendations

for investigating new or revised metrics definitions, and (3) recommendations for other

metrics research and development activities. However, a strong caveat was also issued

concerning research and development in metrics: Metrics buy-in, training, and support,
rather than new metrics definitions or research, need attention and provide the greatest

benefit.

Examples of organizational plans for evolving a metrics program giving insight into

the current status of metrics programs are listed in Table 3-14.

Suggestions and needs were identified for investigating new metrics in the

following areas:

"* Object-oriented metrics.

"• An adaptation of or successor to function points or feature points to support

real-time software, and to provide a measure of size independent of language.

"• Reliability and reusability metrics.

Finally, general metrics problems needing further research and development efforts

were identified:

3-21

" Identifying standard reports for the corporate level. How can information be

abstracted in a valid manner across different application domains, and how

could it best be reported?

"• Investigating the impact of reuse and COTS software on metrics data and anal-

ysis.

"• Evaluating the pay back of measurement. You can over measure. What metrics

really matter?

"• Creating tools and procedures to make measurement non-intrusive.

Table 3-14. Organizational Plans

" Creating a corporate-level metrics stan- - Developing a guidance document on the
dard for project-level metrics, interpretation of metrics.

" Collecting data in a central repository to - Collecting and analyzing development
create benchmarking ranges. costs and recurring costs across projects.

"• Using metrics across programs to identi- - Best tools, and best methodologies.
fy process improvement benefits.

" Creating a division-level electronic data- - Expanding the use of metrics to hard-
base. ware development and systems engi-

neering.

" Creating integrated measurements, not * Developing documentation metrics
broken out into system engineering, (from a producer of shrink-wrap com-
hardware engineering, or software engi- mercial software; the only organization
neering, to support integrated product interviewed currently using a documen-
teams tation metric is also part of a strictly

commercial company).

" Looking for a productivity measure for * Analyzing feature points to see if they
object-oriented metrics, maybe function should be used.
points.

" Looking at adding function points to the - Breaking metrics into sets based on SEI
metrics set. CMM level.

" Enlarging the metrics set to support Lev- - Identifying which metrics should be col-
el 3 organizations. lected after the SEI core. 0

" Investigating algorithmic estimation - Building the ultimate logical LOC
tools. counter.

3-22

3.7.2 Recommendations for DoD Goals and Actions

Interviewees were asked what advice they would give to the DoD regarding the use

of metrics to improve the DoD software acquisition process. Some of the advice given was

generally applicable to any metrics effort and has been included in the best practices

section. The following advice is DoD specific.

* The best role of the DoD would be to offer guidance rather than requirements,

and to standardize its guidance across agencies and services. The DoD's impact

on contractors is often perceived as negative.

* A contractor's own process and process improvement should take precedence

over a DoD mandate. Process improvement is difficult when different custom-

ers impose different standards on different projects.

* While a minimal amount of standardization might be beneficial, it should be at

a high level. For example, the DoD could standardize on a core set of charts to

be used on every program, but shouldn't standardize on the definition of the

charts. Standardization at the level of atomic data and central repositories was

strongly discouraged.

* Ensure that contracts have a WBS that supports whatever metrics the DoD

requires.

• Do a pilot to verify usefulness of information you're collecting before dissemi-

nating DoD-wide.

0 Use and acceptance of project level metrics depends greatly on the customer

and the customer- induced culture. DoD Sub-Program Offices, personnel hav-

ing two-year tours of duty, tend to require metrics showing good performance

on their shifts. They require management to cost. Commercial customers typi-

cally are interested in both cost and time to market. Some non-DoD government

customers, however, have long-term relationships with their projects. They

focus on delivery of the right product rather than schedule or cost. Within this

subculture, there is a lack of incentive to manage to cost and an accompanying
* lackadaisical attitude to metrics collection.

0

3-23

0

4. COMPARISON OF DOD AND COMPANY EFFORTS

This chapter compares DoD and company metrics activities in regard to the state of
practice and lessons learned, with consideration of potential benefits to DoD weapon sys-
tem acquisition. Successive sections address goals, implementation, benefits, metrics used
and their reporting, tools and repositories, and research and development recommenda-
tions. A final section draws conclusions on the basic questions identified for this study.

4.1 GOALS FOR SOFTWARE METRICS

This study shows an important difference between DoD and company practices in
regard to the intended users of metrics. DoD organizations predominantly consider their
metrics users to be acquisition program managers and their office staff. Because program

offices spend much effort in oversight and direction of a development contractor or con-
tractor team, metrics recommended by DoD organizations focus on assessing a contractor's
software development status. Consequently, DoD metrics are similar in scope to contrac-
tors' practices, yielding high potential for conflict but little if any added information that is
clearly pertinent to acquisition decisions. Guidance accompanying DoD metric definitions
is minimal to nil regarding metrics use in program management decisions. DoD metrics
proponents do not recognize adequately that an acquisition program manager has a differ-

ent perspective and decision-making role than a contractor's software development man-

ager.

But it should not be forgotten that metrics may be important also for DoD in-house

developers doing PDSS (post-deployment software support) on weapon system software or
building engineering and management applications that are crucial for weapon system

acquisition. This user community is not particularly recognized in DoD metrics guidance.
Thus, DoD organizations have not effectively identified and accommodated various classes

of metrics users.

In industry, individual project managers now are the primary metrics users. Usually

they retain their project's voluminous and detailed metrics data for their project monitoring,
* control, and planning purposes. But business sector (or application domain) managers are

4-1

emerging as important and major users also. Company metrics increasingly contain pro-
ductivity and quality factors that are derived from project data and reported to higher orga-

nizational levels in the company to assist process and product improvement planning.

Companies are using metrics to assess their return on investments on such things as soft-

ware capabilities, training, and measurement itself.

The DoD-versus-industry differences are most visible when practical metrics uses
are examined rather than goals stated in guidelines and published papers. Figure 4-1 sum-
marizes the survey information regarding how metrics are actually being used by the two
groups of organizations.

Assess project status
and risk

Improve estimation

Improve process and
productivity

Improve or assess
product quality

I I I I I I I I I I0
0% 50% 100%

% of organizations in each group

DoD Organizations
Industry Organizations

Figure 4-1. Comparison of Reported Metrics Usage

Companies appear to be stressing the practical goal of increasing their business
through development process improvement, including improved cost estimation and con-
tract bidding support. Among DoD contractors, this trend may be due partly to DoD's use
of software process improvement or total quality management criteria in awarding con-

tracts.

4-2

No comparable objectives regarding DoD software acquisition are motivating

greater scrutiny and use of metrics. But evidently there is concern that the evaluation of pro-

gram manager performance would become the rationale behind expanding software met-

rics collection throughout DoD.

4.2 IMPLEMENTATION

This study also indicates a significant difference in implementation maturity

between DoD and company metrics efforts. Companies have longer continuous experience

and more evolved implementation artifacts such as handbooks, documented policies, and

repositories. Only a small portion of DoD programs represent a continuous thread of expe-

rience predating 1985. Most can be characterized as recent attempts, repeated in some cas-

es, to find a limited metrics set acceptable to many program offices in order to insert

contractor measurement into acquisition practice.

No unequivocal successes were found in DoD metrics implementation through pol-

icy. About half of the DoD personnel contacted were convinced that a DoD or Service-wide

policy to mandate standard metrics collection and reporting would be unacceptable. Pro-

gram offices oppose reporting current measurements to outside organizations and oppose

standard requirements that may conflict with their contractors' practices or capabilities,

thereby introducing additional program costs.

Several contacts expressed the view that contractors should be defining metrics and

not the DoD. But most also agreed that basic guidance on collecting and using metrics

would be helpful to program offices.

Candid opinions given to us suggest that far less success is being achieved by the

DoD activities contacted than was anticipated, even with a voluntary approach to putting

metrics into practice. Along with lack of policy commitment and executive interest, com-

ments pointed to decreasing funding for organizations trying to provide technical advisory

and technology transfer services. Lack of training opportunities and resources also was

identified as a problem.

Companies are not concerned with evolving finely honed metrics standards,

although some have well-developed handbooks or well-organized standardization efforts.

Companies are focused more on putting measurement into practice expeditiously, relying

on centralized technical support groups rather than high quality guidance and specifica-

tions. They have an advantage in organizational unity and corporate-level performance

goals that motivate progress.

4-3

4.3 BENEFITS

Although this study accumulated many software metrics publications, few of these

publications documented noteworthy successes in DoD program management attributable

to using software metrics. Some DoD activities are vague about specific programs that have

applied their recommended metrics and received concrete benefits. ARDEC, ESC, NASA,

and NUWC cited significant programs as examples of applying software metrics, e.g.,

JSTARS, Granite Sentry, CCPDS-R. It is not always clear whether these applications are 0

succeeding as a direct result of government requirements and program manager initiative,

or instead, is DoD simply accepting the benefits of independent contractor achievements

and initiative? For JSTARS and CCPDS-R, the latter seems to be the case.

On the other hand, a number of successful experience reports have been published

from industry describing achieved benefits in process improvement [Andres 1990, Royce

1990, Dion 1992, Daskalantonakis 1992, Kan, Wohlwend 1993]. The company interviews

revealed concerted effort on assessing benefits and payoff, often through pilot projects,

along with ambitious, time-phased, quantitative goals for process improvement. Actual
improvement achievements may not be often published, but the evident extent of corporate

investment is some reason to believe that actual benefits are worthwhile.

The overall conclusion is that there is little available evidence of government met-

rics recommendations leading to significantly improved program management. Perhaps the

evidence simply has not been gathered and documented. Industry, on the other hand, is pub-

lishing benefit experiences and demonstrating that competitive advantages can be realized

by applying measurements to improve development processes and products.

4.4 METRICS AND REPORTING

DoD organizations have been led by unsuccessful prior experience to downsize

their metrics recommendations in order to find a minimal requirement that is acceptable to

program managers. NASA related some experience that others also suggest-well-founded

metrics definitions are ignored or followed inconsistently, while the most simply formulat-

ed metrics are argued to be unusable for lack of definition. Industry experience also sug-

gests that simple metrics work out better, and that it is very important to understand who

needs metrics and for what purpose.

The metrics currently recommended by DoD organizations are fairly similar in the

underlying input data required. Differences arise in computed metrics, presentations, or

reporting criteria, such as using a percentage rather than an absolute ordinal scale, or report-

4-4

ing certain metrics at weekly versus monthly intervals. Some metrics sets have require-

ments that are costly and hard to accept as a program management need. An example is

* requiring a SLOC impact assessment on all reported defects. An estimate of modified

SLOC to repair a defect will not be accurate without doing most of the repair analysis. Also,

it is not as valuable for setting priorities for defects for repair as the determination (also

required) of a defect's impact on users and operations. The SLOC impact requirement per-

* haps illustrates government policy makers trying to micromanage an individual developer.

Although more data collection should not be a goal in itself, companies collect more

metrics information than requested in current DoD recommendations. Some of the addition

is management and financial data, and much of it is software technical or product data that

indicates quality or productivity. More company projects depend on metrics for managing

development than appears the case for organizations managing DoD programs.

DoD metrics are seldom reported above the individual program office. Companies

* are reporting summarized or derived metrics, not raw data, to the corporate or division lev-

el, where it is used for business and process research purposes. A prevalent use is calibrat-

ing software cost estimation models in order to fine-tune pricing for proposals. Figure 4-2

compares metrics reporting within DoD organizations and industry, with strictly commer-

cial companies separated from DoD contractors. From such evidence it appears that DoD

contractors have at least equally mature metrics programs as strictly commercial organiza-

tions.

For an overall picture of metrics use and reporting in industry, a representative tax-

* onomy was developed during this study from several industry examples. This is given in

Table 4-1 to illustrate the typical number and scope of metrics collected at a project level,

a division level (multiple projects in a similar application domain or business line), and cor-

porate level.

4.5 TOOLS AND REPOSITORIES

Companies are more active in assessing available tools and configuring metrics tool

sets than DoD organizations appear to be. Those with more mature measurement programs

*A believe that available tools are limited or unsuitable in some capabilities, and they are

investing in new tool development. No significant metrics users among DoD organizations

are investing in new tool development, with the exception of the Army STEP program.

4-5

Metrics collection and
reporting above project or __
program are required _

Metrics on multiple projects
are kept for analysis and
regular executive review

Number of metrics
reported up

None

1-5

6-15

>15 I

0% 50% 100%

DoD organizations
SJDoD contractors

Commercial companies

Figure 4-2. Comparison of Metrics Reporting Practice

Available COTS tools appear to be adequate for initiating metrics support for acqui-

sition programs. A limited number of general suggestions were made for future tool

research and development needs.

Only NASA SEL, among this study's contacts, is maintaining a computer reposito-

ry across multiple programs. It is used for research and baseline planning data, not program

evaluation. A COTS database system was used satisfactorily in that experience.

Companies tend to use multiple repositories to hold specific segments of metrics

data for particular analysis and decision purposes. The more voluminous amount of data

for project control and management is held within project organizations. COTS tools

appear to suffice for repository needs.

4-6

Table 4-1. Illustrative Taxonomy of Industry Metrics Usage

• User - Purpose - Review Assessment Areas and Metrics

Cycle Project Product Process

Corporate Executive • productivity * customer • divisional
"satisfaction maturity level• assess corporate

* capability • shipped defect • improvement

"• quarterly rate progress

Division or Business Sec- * size e customer • problem/
tor Manager * effort satisfaction defect aging

- assess team capability • cost * Shipped defect o defect
and project performance . schedule

• monthly • release - cycle time
capability -process

* reuse improvement
* status

Software Project Manager - size - release - inspections

"• assess product & process * effort capability -in-process

"* weekly 0 cost traceability defects

* • schedule * shipped defect • fix quality &
rate cycle time

Sstaffing stability - reliability

• code quality - unit progress

* test coverage * test progress
• target - documentation

computer progress
utilization -environment

I maturity

4.6 RESEARCH AND DEVELOPMENT RECOMMENDATIONS

4.6.1 Recommended Research Toward Better Metrics Capabilities

This list highlights the suggested areas that look most important.

* Validation of metrics as to their benefits and relationships to other models

* Training

* Metrics for object-oriented methodology

4-7

Tools to assist metrics collection and distribution across various developmental

and managerial participants

4.6.2 Recommendations for DoD Action To Improve Measurement

The following succinct statements appear to capture the essence of recommenda-

tions offered on future DoD action.

"* Improve available training and guidance on use of metrics. 0

"• Provide wide latitude for local choices within any measurement policy.

4.7 CONCLUSIONS ON BASIC STUDY QUESTIONS

This section provides concise answers to the basic questions posed for the first •

phase.

What factors distinguish company and DoD practice in software metrics?

Within DoD organizations, the state of practice appears spotty and immature. It is

not likely to improve significantly because of major barriers. These include lack of clear

and practical goals consistent with user responsibilities, lack of documented success, lack
of support for technology transfer and training, lack of understanding of appropriate met-

rics and their effective use, and apparently strong program office opposition to external S

reporting and to cost-adding requirements. Company practice is more mature and further

evolved for both DoD contractors and strictly commercial companies. It is motivated by a

clear and widely supportable purpose, i.e., improve competitiveness within company appli-

cation or business domains for the sake of gaining new business. Companies are doing the S
ground work to understand their metrics users and their different purposes for having met-

rics.

What problems are managers trying to address through metrics collected during the

software development process?

DoD managers are trying to assess the status of development contractors' work and

to foretell problem situations. But metrics should not be the primary basis for detecting pro-

gram management difficulties. Instead they should serve as auxiliary, quantitative data for •

assessing the eventual impact of undesirable trends or for assessing the benefits of a delib-

erately instituted development approach. DoD goals for software metrics appear to be inad-

equately conceived, and the proper role of metrics for program management is not well

understood and communicated to users. 0

4-8

Companies are using metrics for different purposes at different organizational lev-

els. At the performing project level, metrics describe work status, resource expenditures,

and the myriad factors that apply in daily decision making and planning. At a division or

domain level, metrics are used to synthesize trends related to narrow improvement issues.

The prevalent example is calibrating cost estimation models. At the corporate level, metrics

are used to assess status, benefits, and return on investment for process improvement effort.

To what extent has the application of software metrics proven successful?

Software metrics include basic management and status data that is essential to effec-

tive project management on a daily basis. Many acquisition programs can be cited where

contractors collect and use metrics and report them to their DoD program offices. Analysis

would show similarities with DoD metrics recommendations. Companies have published a

number of success stories on using metrics to guide improved development processes and

practices. The extent of metrics use within commercial companies and DoD contractors is

convincing evidence that software developers see value in software measurement.

It was not a study objective to determine whether government requirements or con-

tractor initiative has been the main force behind metrics use in defense software develop-

ment. However, little evidence was found of successful acquisition program management

directly attributable to use of software metrics.

Does company practice reveal metrics capabilities, concepts, or tools that could ben-

efit DoD's software acquisition process?

The trend in company metrics use is to gain long-range and company-wide market-

place benefits, not merely to solve short-range problems in each project. As part of their

approach, companies are establishing policies for metrics collection and technical support

groups for institutionalizing measurement. They also are investing in building or acquiring

better metrics tools.

Company trends may appear at odds with recommendations the study heard relative

to the status quo in DoD acquisition practice. Company practice aims to collect useful data

for defined purposes, to integrate measurement with development process innovations, and

to exploit metrics productively in an overall business perspective. DoD staff in contrast are

recommending limited data collection and measurement programs tailorable to the con-

straints and goals of each acquisition program.

4-9

To pursue a measurement concept comparable to that emerging among companies,

DoD would have to have acquisition process objectives that transcend individual acquisi-
tion programs. DoD also would have to provide incentives for performance or achieve-

ment, similar to what the marketplace offers to company practice.

What lessons have been learned in applying software metrics?

The major DoD lesson is that policies and standards are unlikely to be accepted
unless acquisition program offices are given latitude to control external reporting and cost
impact, as well as an incentive to participate, say in the form of some benefit not available

to them by other means. Choices and definitions of metrics should be goal or issue driven,
and tailorable to each project and its working environment. Company experience correlates
with that view insofar as telling us that metrics prove beneficial when a clear and rewarding
goal is identified for their use and they have been carefully designed for well-defined pur-

poses.

Which metrics have been most beneficial?

The minimal metrics set being recommended by most DoD programs, e.g., cost or
effort, defects, change reports, schedule, development progress, is widely used among
companies. Indeed, one company contact exclaimed that a project could not be managed
without them. But companies collect more metrics than DoD programs recommend, as it
suits their defined purposes for project management and process improvement. Much of the

added data is management and financial data related to productivity, competitiveness, and

quality management.

Has the use of metrics influenced the software development process or planning of

future efforts?

This question does not apply to the stated province of DoD metrics efforts, i.e., to
assist program management, because program management must be distinguished from
software project management. From the company perspective, measurement is having a
significant impact and becoming an integral part of the software development process.
Investments are being made to expand measurement capabilities.

In DoD, little or nothing is being done to improve metrics tools or establish repos-
itories of data from many projects. Most of the currently recommended metrics do not
require significant tools beyond widely available spreadsheet and database packages. Cur-
rent planning toward a National Software Council may lead to a repository proposal. How-

4-10

ever, this study indicates that a comprehensive plan is needed for effectively addressing all

metrics uses and users across DoD.

In contrast, companies are establishing repositories and using them for process and

product improvement. Process maturity criteria are being taken seriously by DoD contrac-

tors.

What human factors issues have been taken into consideration in applying metrics?

In DoD, the technical complexity of metrics has driven effort to simplify metrics

and evolve clear graphical presentations of measurements on a project history time line.

Not enough has been accomplished to understand the relevant metrics and to communicate

their effective use for acquisition program management or for other DoD responsibilities,

e.g., PDSS, that are associated with weapon system acquisition. Training is a recognized

problem and a need for action by the Defense Systems Management College was voiced by

one contact at least.

None of the DoD recommended metrics will intrude on an individual developer's
work unless improperly implemented. Also, with a reasonable level of configuration man-

agement and labor accounting support, none should require much time to report. Much of

the data is determined and collected periodically at intervals of a week or month. Metrics

involving voluminous and tedious counting, e.g., SLOC, are readily automated with tools

as has been amply demonstrated.

4-11

APPENDIX A.

METRICS PROGRAMS OF DOD ORGANIZATIONS

A-1

0

Table of Contents

A. 1 ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEER-
ING CENTER (ARDEC) ... A-3 0

A.2 ARMY COMMUNICATIONS - ELECTRONICS COMMAND (CECOM) A-7

A.3 ARMY MISSILE COMMAND (MICOM) .. A-11

A.4 ARMY OPERATIONAL TEST AND EVALUATION AGENCY (OT&E) A-15

A.5 NAVAL AIR SYSTEMS COMMAND (NAVAIR) AND NAVAL AIR
WARFARE CENTER AIRCRAFT DIVISION (NAWC-AD) A-21

A.6 NAVAL UNDERSEA WARFARE CENTER (NUWC) A-25

A.7 AIR FORCE MATERIEL COMMAND (AFMC) ... A-29

A.8 AIR FORCE ELECTRONICS SYSTEM CENTER (ESC) A-33

A.9 AIR FORCE ROME LABORATORY ... A-35

A. 10 DEFENSE INFORMATION SYSTEMS AGENCY (DISA) A-37

A.11 JOINT LOGISTICS COMMANDERS (JLC) .. A-41

A. 12 SOFTWARE ENGINEERING INSTITUTE (SEI) .. A-45

A. 13 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA) A-51

A-2

A.1 ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEER-

ING CENTER (ARDEC)

The Army Armament Research, Development and Engineering Center (ARDEC)

at Picatinny Arsenal, New Jersey, is a component of the Army Materiel Command (AMC).

ARDEC's mission involves research and engineering on direct fire, close combat systems

ranging from bayonets to tank cannons, and indirect fire support systems such as artillery,

mortars, mines, and demolitions. ARDEC provides independent evaluation capability to

assist Army acquisitions and certify software under its quality assurance, test, and

evaluation efforts.

ARDEC's software metrics effort began in 1983 as a research program. In 1990,

ARDEC developed the Readiness Growth Model (RGM) for software. This result was an

outgrowth of an effort chartered by the Army Vice Chief of Staff and the Undersecretary of

the Army to improve the overall quality of software, prevent immature software from

entering user system tests or deployment, and to integrate test and evaluation (T&E) into

software development processes.

ARDEC also has collaborated with Army Communications - Electronics Command

(CECOM) to develop AMC guidance for the implementation of the Army Software Test

and Evaluation Panel (STEP) metrics in conjunction with use of RGM.

A.1.1 Metrics and Reports

The RGM is a cumulative evaluation framework for system indicators or

characteristics that have a measurable impact on software maturity. Primary areas such as
requirements traceability, stability of requirements, design and code, and fault profiles, are

subdivided into quantitatively assessed factors (typically, 26 factors). Point allocations are
assigned to each factor and weighted to produce an RGM score that would total 100 points

* if the software merited a perfect rating for each factor. Assessing the RGM factors

periodically or at significant milestones in a system's life cycle yields a visual perception

of improving maturity called the RGM curve.

RGM becomes a risk assessment and decision-making tool once specific scores or

0 scoring zones are established for a program to proceed past given milestones such as

Preliminary Design Review (PDR), Critical Design Review (CDR) and Formal

Qualification Testing (FQT). The trend shown by the RGM curve helps a program manager

or acquisition executive to focus on system issues requiring increased attention.

A-3

Typical factors used in computing the RGM maturity score are listed in Table A- 1.

However, RGM is intended as a tailorable methodology to be adjusted by a user to the

unique characteristics of a software system and its development methodology.

Table A-1. Typical RGM Metrics

Requirements allocation/ Fault profile
tracing Ada implementation
Requirements stability Code complexity
Design stability FQT test coverage
Code stability FQT tests passed
Test coverage FQT regression testing
Tests passed Technical test coverage
PQT test coverage breadth Technical tests passed
PQT tests passed TT regression testing

Army use of RGM continues as AMC staff effort proceeds toward integration with
STEP metrics and their implementation. Draft AMC guidance for the latter, published in

1992, identifies seven baseline metrics and six optional metrics, listed in Table A-2.

Table A-2. Candidate AMC STEP Metrics

Baseline Metrics Optional Metrics

Requirements traceability Computer resource utilization
Fault density prediction Software engineering environment
Fault profiles Development progress
Depth of testing Manpower
Breadth of testing Cost
Code complexity Reliability
Cumulative stability

RGM has been applied in about 20 acquisitions of systems such as armored

systems, howitzer systems, and smart mines. Specific examples include the M 1 A2 Abrams

battle tank, the Advanced Field Artillery System (AFAS), the Future Armored Resupply

Vehicle (FARV), and the Nuclear, Biological, and Chemical Reconnaissance System

(NBCRS). DoD program reviews by the Defense Acquisition Board, for Army and other

Service programs, also have benefited from use of RGM.

A.1.2 Levels of Reporting

At present, there is no AMC directive or standard requiring use of RGM or

reporting of results to higher command levels.

A-4

A.1.3 Tools and Repositories

Widely available commercial spread sheet packages are suitable for tracking RGM

factors and producing the RGM curve in graphic form.

ARDEC maintains a paper repository of RGM metrics for ongoing programs, to

serve research purposes. AMC has chartered Army Test and Evaluation Command

(TECOM) at Aberdeen Proving Grounds to collect Army STEP metrics data over as many

programs as possible. This effort will use a commercial database software package.

A.1.4 Best Practices and Lessons Learned

Program managers and executives may not readily understand individual software

metrics, but they do seem to easily understand the RGM curve. The RGM curve is

analogous to the Reliability Growth Curve on which they are trained in systems

engineering.

ARDEC staff advocate DoD-wide improvement in software measurement

capabilities and are participating in the Joint Logistics Commanders project to develop a

measurement handbook to support program managers in use of MIL-STD-498.

A perceived problem with software metrics programs is that contractors appear to

need funds earmarked for collecting metrics. Computer-assisted software engineering

(CASE) tools should help ease the burden of metrics data collection.

ARDEC staff recommend flexibility in selecting acceptable metrics, e.g., allowing

each contractor to define goals and measurements themselves. They also would emphasize
product rather than process measurements.

A.1.5 Future Plans and Directions

ARDEC staff would like to validate RGM with assistance from the Software

*1 Engineering Institute (SEI), and also determine if there is any relationship between SEI

maturity level scores and the shape of RGM curves.

ARDEC continues to seek experience input for establishing RGM weights, shape

of the curve, and other rules of thumb.

ARDEC staff recommend research toward better measures of software reliability.

The reliability of a software module in a testing phase may not be an accurate measure of

its reliability in the intended operational environment.

A-5

A.2 ARMY COMMUNICATIONS - ELECTRONICS COMMAND (CECOM)

Army Communications - Electronics Command (CECOM), located at Ft.
0 Monmouth, New Jersey, provides engineering and acquisition support services for

communications, training and simulation, command and control, intelligence and

electronic warfare, fire support, tactical fusion, and avionics systems.

CECOM's software metrics program has evolved since the late 1980s at its

Software Engineering Directorate (SED). One early result was a metrics-based quality

assurance methodology for the Advanced Field Artillery Tactical Data System (AFATDS).

CECOM's efforts have leveraged results from other DoD programs, such as Software

• Technology for Adaptable and Reliable Systems (STARS) measurement methodology, Air

Force Rome Laboratory's software quality framework, and Air Force Systems Command

management and quality indicators.

CECOM has produced a guidebook for executive managers describing an issue-

driven, data-based metrics methodology called Streamlined Integrated Software Metrics

Approach (SISMA). SISMA is a comprehensive approach to acquisition oversight, timely

process and product insight, risk management, and process improvement. The SISMA

guidebook provides a specific, user-friendly path for applying the recently mandated Army

0 STEP metrics, as well as other metrics that program managers may find useful.

A.2.1 Metrics and Reports

The SISMA guidebook identifies the STEP metrics and extensively discusses

0 graphical presentations of the metrics and their derivation from original or raw data input.

The guidebook includes a series of concise discussions focused on common software

management issues.

SISMA supports an organization's development process improvement up through

0 Level 4 of the SEI Capability Maturity Model (CMM). The guidebook includes sample

Request for Proposal (RFP) text and Contract Data Requirements List (CDRL) descriptions

to implement the SISMA process contractually.

0 A.2.2 Levels of Reporting

The SISMA guidebook discusses Army STEP implementation requirements,

referencing Part Seven of draft DA Pamphlet 73-1. The technical staff in a program office

would develop reports as suggested in the guidebook and provide an analysis for review by

A-7

the program manager. The analysis would lead to corrective action alternatives for control

of the current project, and to lessons learned to be applied to management of future projects.

The CECOM SED has a draft technical operating procedure as guidance for all their 0

supported projects to implement the SISMA and STEP metrics.

No CECOM directives or regulations were identified that concern reporting of

software metrics information beyond a program office. However, the draft SED procedure 0

contemplates accumulation of metrics information in a repository. CECOM offers

complete support to Army customers in the application of SISMA, and is also developing

a standard operating procedure and other guidance documents for measurement programs.

A.2.3 Tools and Repositories 0

The use of tools and repositories is advocated in the SISMA guidebook. No specific

tools are recommended so as to allow flexibility and to avoid commercial bias. A CECOM

effort is mentioned that will develop and integrate a set of tools to support SISMA. The

capability to model the development process in which metrics collection and analysis

occurs is strongly advocated.

A.2.4 Best Practices and Lessons Learned

CECOM's SISMA guidebook contains numerous admonitions on best practice and

perspectives for software metrics. Here is a partial list of such lessons for users:

a. Metrics are not a silver bullet but serve as basic indicators to provide early

insight into a program's trends and status. Program assessments should be based 0

on integration of other information as well.

b. Metrics-based assessments are only as valid as the input data. It is important to

identify an efficient data set, viable data sources, and validation techniques.

c. Metrics are only as good as the development process that produces them. 0

d. Metrics should not be used as a stick to beat the developer or other support orga-

nization.

e. The metrics process cannot be conducted exclusively by the developer. A team 0

effort is needed among program office and contractors for greatest benefit.

f. A fixed metrics set is not recommended. Adaptability to existing metrics and

reconfigurability to different software process models and mission domains are

highly desirable.

A-8

0

g. The metrics process is issue driven and applied throughout the development life

cycle.

A.2.5 Future Plans and Directions

CECOM is now heavily focused on transferring metrics technology to program

office customers and providing needed training and support. User surveys and benefit

analysis work have been done, and current applications or pilot projects are being tracked.

A working group for interchange and planning meets bi-annually, bringing together

defense industry metrics experts, CECOM software support staff, and CECOM customers.

A specific goal mentioned in the SISMA guidebook is to upgrade the SISMA process to

support organizational improvement to CMM Level 5 (Optimizing).

A-9

A.3 ARMY MISSILE COMMAND (MICOM)

Army Missile Command (MICOM) at Redstone Arsenal, Huntsville, Alabama, has

a mission for engineering, acquisition, and post-deployment support of Army offensive and

defensive missile systems.

MICOM's metrics program began in late FY 89 and has evolved within MICOM's

Software Engineering Directorate (SED). Initial direction was given by the Fire Support

Program Executive Officer, who requested a minimal set of software management indica-

tors for use in all Fire Support programs. The Software Engineering Directorate considered

measurement methods then in practice for Air Force and Army programs, e.g., AFSCP 800-

43 and AMC-P 70-13, but sought to improve on them by addressing early development

activity and specific means to identify critical problems. The result, a set of Software Man-

agement Indicators, is documented in a 1991 user's manual.

No information was available about specific MICOM programs that have adopted

* and used this metrics set. However, MICOM SED has responsibility for 44 software

projects involving 40 different computer languages and has been a strong advocate of soft-

ware metrics. It has an active metrics working group which recommends policies and pro-

cedures for the use of metrics on all projects. The SED continues to perform research, e.g.,

* in metrics data validation and modeling of metrics applications, and has considered the

Army's STEP metrics in the light of MICOM experience.

A.3.1 Metrics and Reports

* The Software Management Indicators comprise the following eight metrics:

* Requirements stability

* Software development manpower

* * Software development progress

* Computer resource utilization

• Schedule risk

* * Trouble report resolution

• Software product delivery

* Supportability

A-11

0 I I I I I

The MICOM user's manual provides instructions on computing the metrics from

raw source data (e.g., the specific requirements changes recorded each month) and present-

ing the data as time history plots and as red-amber-green "stoplight" charts during various

time periods during the project life cycle (per DOD-STD-2167A phases). These indicators

do attempt to account for object-oriented design and Ada applications

A.3.2 Levels of Reporting

Management-oriented visual displays are recommended in the user's manual, but

no explicit requirements or MICOM regulations were indicated for reporting of Software

Management Indicators beyond a program office. There is no current MICOM policy to

support or mandate the Software Management Indicators, but MICOM's SED requires all

projects to collect metrics.

A.3.3 Tools and Repositories

MICOM SED has considerable usage experience with metrics tools, with several

commercial tools in place for ready use and evaluation experience with many others,

including software cost-estimation tools such as COCOMO (COnstructive COst MOdel).

MICOM has experience in establishing computer database files for project tracking, evi-

denced by a relational database description for the Software Engineering Evaluation Sys- 9

tem (SEES). SEES records the basic project schedule, DOD-STD-2167A deliverable

document identification, and basic counts or totals for discrepancies noted, resources

expended, and other factors in reviewing project results. Other in-house developed tools

include a spreadsheet for collecting and analyzing software architecture metrics as part of 0
research on object-oriented Ada design methodology.

A.3.4 Best Practices and Lessons Learned

MICOM staff consider it very difficult to find software development tools to collect

and support metrics (e.g., as part of configuration management or software maintenance).

Most of those evaluated or in use have limited scope of application and none are integrated

with development tools to adequately support the range of projects under SED responsibil-

ity.

Metrics have played a key role in MICOM SED's software process maturity

improvement efforts in cooperation with the Software Engineering Institute (SEI). MICOM

SED will soon become the first Army organization to be rated as high as Level 2 on the

maturity scale.

A-12

Review of Army STEP plans and requirements has raised the following concerns

which were identified in working papers:

• Conflict with established metrics programs of individual Army commands.

* Potential cost added by requiring Software Engineering Institute's capability

maturity level.

• Complexity metrics, e.g., Halstead metrics, that are not effective with Ada and

other development paradigms.

* Metrics that are not mature or well defined, e.g., software reliability.

• Lack of contractual implementation.

* Potential for excessive cost.

* Potential for misinterpretation and misuse of a "national database" of program

metrics.

0 Little value added in converting Software Management Indicators to STEP for-

mat when same indicator is being measured.

* No funds are provided to support STEP implementation.

A.3.5 Future Plans and Directions

Current research projects include correlating results of complexity and management
indicators with project outcomes, and defining better metrics such as coupling and cohesion

that are effective for Ada and object-oriented development.

MICOM staff recommend configuring metrics programs in stages correlated to SEI

maturity levels and supporting improvements in available tools for metrics data collection.

A-13

0

A.4 ARMY OPERATIONAL TEST AND EVALUATION (OT&E) AGENCY

The Army Operational Test and Evaluation (OT&E) Agency is responsible for eval-

uating the acceptability of systems for delivery to its contracting agency, via the mechanism

of an operational test. By the 1980s they were discovering that software problems caused

most delays in operational test. Between 1986 and 1990 OT&E found that over 90% of the

delays experienced in the initial operational tests were due to immature software [Paul a].

Hence, the Software Test and Evaluation Panel (STEP) was formed in September 1989 to

address these problems.

One of the principle recommendations of the STEP panel was to "establish a set of

core software metrics and a centralized metrics database" [Dubin 1992]. The metrics would

help place management into a continuous evaluation mode and thus prevent the failure of

software at the last moment, as was occurring in OT&E during the 1980s. The selection cri-

teria for the STEP metric set included the following: each metric must be useful and unam-

biguous; each must be simple and non-labor intensive to collect and evaluate; each must be

capable of consistent interpretation; and each must have intrinsic worth and demonstrate

added value to the software development process.

A software metrics program is mandated for all DoD software acquisition programs

by DoD Instruction 5000.2, "Defense Acquisition Management Policies and Procedures,"

February 23, 1991. An Army policy letter dated June 4, 1993, states that the use of the

STEP metrics is required for all software-intensive programs. Chapter 17 of DA Pamphlet

73-1, Part 7 defines the STEP metric set and gives extensive information on each metric,

including purpose and description of the metric, life cycle application, algorithm and

graphical display, data requirements, frequency of reporting, and use and interpretation.

Data Item Descriptions (DIDs) have been drafted, formally staffed for comments through

the Army Materiel Command, and are awaiting approval.

Although compliance with the STEP metrics is not universal, several program offic-

es are currently collecting STEP metrics data, including the program offices for the Patriot

Missile, THAAD (THeatre High-Altitude Defense), and FATDS (Field Artillery Tactical

Data Systems). A training program will be funded and provided for all Army program exec-

utive officers and program managers beginning in June 1994.

A.4.1 Metrics and Reports

The STEP metrics set contains 12 software measurements, which are classified as

management metrics, requirements metrics, or quality metrics. The management metrics

A-15

include cost, schedule, computer resource utilization, and software engineering environ-

ment. The requirements metrics include requirements traceability and requirements stabil-

ity. The quality metrics include design stability, fault profiles, breadth of testing, depth of

testing, reliability, and complexity. Following is a more detailed description of each of these

measurements.

The cost metric deals with the dollars spent versus the dollars allocated. It is based

on three data items, the budgeted cost of work scheduled, the budgeted cost for work per-

formed, and the actual cost of work performed. These data items are collected for each

activity (e.g., requirements analysis, design, code and unit test, computer software config-

uration item (CSCI) integration and test, problem resolution, software management, quality

assurance, configuration management) for each CSCI.

The schedule metric indicates major milestones, activities, and key software deliv-

erables. It requires data collection on planned and actual schedules for milestones (e.g.,

System Design Review (SDR), System Requirements Review (SRR), Software Specifica-

tion Review (SSR), Preliminary Design Review (PDR), Critical Design Review (CDR),

Test Readiness Review (TRR), Formal Qualification Testing (FQT), Technical Test ('IT),

Functional Configuration Audit (FCA), Physical Configuration Audit (PCA), Operational

Test (OT)) and deliverables (e.g., Software Development PLan (SDP), System/Segment

Specification (SSS), Software Requirements Specification (SRS), Interface Requirements

Specification (IRS), Software Development and Documentation (SDD), Software Test Plan

(STP), Software Test Description (STD), Software Test Report (STR), Version Description

Document (VDD), Software Product Specification (SPS)).

The computer resource utilization metric indicates the current status of resources

and the rate that resources are approaching their limits. For each resource (central process-

ing unit (CPU), memory, storage, and input/output (I/O) data) is collected on the capacity

of the resource, the target upper bound usage, the projected usage, and the actual usage. For 0

each CSCI (measured in bytes) data is collected on the RAM (random access memory) allo-

cation and actual usage, the mass storage allocation and actual usage, and the capacity of

RAM and mass storage.

The software engineering environment metric measures the degree of software

development process maturity. The data collected includes the maturity level, process

strengths and weaknesses, and the date of evaluation.

0

A-16

The requirements traceability metric measures the adherence of the software

specification, design, and code to their requirements. The metric requires collection of the

total number of requirements identified at each level (Operational Requirements Document

(ORD), SRS, and IRS) and the number of requirements traceable to the next lower level.

(SRS and IRS requirements are traced to CSCI design, computer software component

(CSC) design, computer software unit (CSU) design, code, and test cases.)

The requirements stability metric measures the degree to which changes in soft-

ware requirements or changes in the software developers understanding of the require-

ments, affect the development effort. It requires collection of the following data for each

CSCI: number of discrepancies against software requirements for each review (SSR, PDR,

and CDR); number of software engineering change proposals (ECPs) against software

requirements; for each ECP, number of source lines of code (SLOC) affected, number of

modules affected, and number of SRS requirements added, modified, or deleted; and total

SLOC for the CSCI.

The design stability metric indicates the amount of changes made to the design of

the software, as well as the completeness of the design. Design stability is defined as the

ratio of modules in the current delivery design that have been modified, added, or deleted

from the previous delivery design. Design progress is defined as the ratio of the number of
modules in the current delivery design to the number of modules projected for the project.

The fault profiles metric provides insight into the quality and maturity of the soft-

ware. Information collected from software trouble reports includes the number of software

faults detected and resolved during testing, and analysis of software faults to determine pri-

ority, problem category (when discovered) and status.

The breadth of testing metric indicates the degree to which user functions and

software requirements have been successfully demonstrated (black box testing). It is

defined as the ratio of the number of requirements that have passed their test to the total

number of requirements.

The depth of testing metric indicates the degree to which CSUs have been tested

* (white box testing). This metric is composed of coverage calculations:

"• Number of paths executed/total number of paths

"° Decision points exercised/ total number of decision points

A-17

* Number of executable statements exercised/total number of executable state-

ments

Number of inputs tested /total number of inputs) and success calculations (num-

ber of paths successfully executed/total number of paths)

Number of decision points successfully exercised/total number of decision

points

" Number of executable statements successfully exercised/total number of exe-

cutable statements

"* Number of inputs successfully tested/total number of inputs

The reliability metric measures the contribution of the software to the overall sys-
tem mission failure rate in the system's intended environment, assesses the length of system
downtime due to software failures, and predicts the number of faults remaining in the soft-

ware.

The complexity metric measures the quality of the evolving design and code in
terms of the control structure and size of the software. It includes McCabe's cyclomatic
complexity, Halstead's complexity metric, control flow metric (number of times control

paths cross), lines of code, and percentage of comment lines. 0

A.4.2 Levels of Reporting

There is current discussion on whether OT&E should be involved in tracking test
readiness by accessing a centralized metrics database, or whether the acquisition commu-
nity should control access to their individual project-level metrics databases and hence be
the primary users. While OT&E could maintain independence as compared to the end

users, current perception is that metrics databases belong under acquisition control.

STEP metrics are to be reported at major acquisition milestone reviews, including 0

Major Automated Information System Review Committee (MAISRC)/Army System
Acquisition Review Council (ASARC) reviews and test readiness reviews. The exact

reporting requirements, including formats, are still undecided.

A.4.3 Tools and Repositories

There are several efforts underway to assist in the automation of the data collection

and reporting of the STEP metrics. A survey of commercial off the shelf (COTS) metrics

A-18

0

data collection tools has been conducted and a summary is included in the Army Pamphlet

73-1, Part 7.

An Army-wide metrics database, designated the Software Metrics Management

Information System (SMMIS), will serve as the repository of lessons learned from the use

of the STEP metrics. SMMIS output reports will assist Army managers in tracking their

projects, evaluating the quality of the resulting software products, and in general, identify-

ing deficiencies or anomalies based upon expected and actual values of the reported met-

rics. SMMIS is currently available in both a Unix version and a stand-alone DOS version.

STEP has also sponsored the development of a series of software tools, provided as

an overall analytical system called the Decision Analysis System (DAS). These tools sup-

port senior Army program executive officers (PEOs) in various analytical tasks including

statistical analysis, reliability evaluation and prediction, and risk analysis.

A.4.4 Best Practices and Lessons Learned

When the STEP metrics initiative was proposed, several benefits were foreseen

[Paul b]. In the short term, program managers would be able to improve their monitoring

of software development; senior Army officials would have measurable criteria for mile-

stone decisions. In the mid term, metrics collection would improve Army software man-

agement practices; the central database would allow definition of the most effective metrics

and correlations between metrics. In the long term, an established metrics set would

encourage development of more concise metrics tools to predict software development

progress, measure software product maturity, and define exit criteria for each stage.

The following issues concerning the STEP program reflect opinions gathered from

various sources, including the STEP metrics training manual [US Army 1992].

"• Many Army managers are nervous about the use of a central repository for a

standard set of metrics.

"• Many program offices prefer to use their own existing metrics set.

"• Some program offices want the freedom to tailor the STEP metrics set to better

suit their projects.

"• Better definition and clarification of the metrics is needed.

"• Guidance for implementation, transition, and support is needed.

• Funding to support data collection and analysis is desired.

A-19

While universal compliance is a challenging goal, several Army program offices

have adopted and used the STEP metrics set in their projects. A General Accounting Office

(GAO) Report, DOD Slow in Improving Operational Testing of Software-Intensive System,

observes that "the Army has made substantial progress in developing enforceable policy

guidance. The Army also implemented ... 12 Servicewide... software metrics."

A.4.5 Future Plans and Directions

During 1994, the Army has several efforts scheduled that will focus on validating,

implementing, and improving the research and development needs of the STEP measure-

ment program. The Army plans to set up a formal validation program for the STEP metrics

to determine whether they measure what is intended and if there is a statistically significant

relationship between the metrics values and management objectives.

Implementation plans call for installing personal computer based databases in

approximately 200 program offices by March 1994 and starting the necessary training by

June 1994. By Fall 1994, the program office databases are scheduled to be networked and

to be able to deliver data to more centralized databases at the Program Executive Offices.

Eventually, it is envisioned that a hierarchy of networked databases will culminate in an

Army-wide repository that will be accessible to senior Army officials.

Future research and development efforts support the development of models to help

interpret the STEP metrics. The Army is sponsoring the development of a model, based on

a neural network, that uses information from previous software projects to predict aspects

of a current software project For example, the neural network may help to identify CSCs

that require high development effort or the CSCs that will be error prone [Paul 1992]. In

addition, the Army is sponsoring a study whose purpose is to "develop a systematic and

comprehensive approach for analyzing and interpreting metrics data." The approach is to

develop a multivariate equation based on metrics that are highly correlated. A second

objective of the study is to "develop a framework for objectively grouping these similar

metrics to obtain a small set of super metrics" [Goel 1993, page 1].

A-20

A.5 NAVAL AIR SYSTEMS COMMAND (NAVAIR) AND NAVAL AIR WAR-

FARE CENTER AIRCRAFT DIVISION (NAWC-AD)

0 The primary Naval Air Systems Command (NAVAIR) metrics effort is sponsored

by the Avionics Systems Engineering Division. AVION Instruction 5235.1 [NAVAIR

1992] applies to all AIR-546 organizational elements supporting NAVAIR weapon system

procurements and requires the use of software metrics for all NAVAIR weapons systems.

NAVAIR is currently working on policy and procedures for all software efforts, to include

software metrics.

The Naval Air Warfare Center (NAWC) is actively participating in these activities.

In a separate effort pursuing metrics needs, NAWC Aircraft Division (NAWC-AD) has

used a blue ribbon panel to survey its managers, and based on those results and other les-

sons and experiences, has prioritized a list of metrics into four increments that address man-

agement questions. NAWC-AD developed a Software Measurement Guide [Rozum 1992b]

with the help of the Software Engineering Institute (SEI). The first draft was released in

October 1992 and an update is imminent [Koch 1994]. The revision adds all remaining met-

rics required for a maturity level 2 organization (e.g., complexity, computer resource utili-

zation, requirements stability, cost, and build release content).

A.5.1 Metrics and Reports

AVION Instruction 5235.1 requires that software metrics be collected and analyzed

to aid the software management process. The instruction defines a specific set of metrics,

but NAVAIR did not dictate the use of only that set. Rather it required that set or its equiv-

alent. The goal is to aid the management process and establish a database for projecting

development costs for future programs. The instruction's effect has been slow due to the

low rate of new Request for Proposals (RFPs) for applicable systems.

0 The NAVAIR Avionics Systems Engineering Division currently is developing a

handbook for implementing software metrics based on the old AVION Instruction 5235.1.

It has added a format for collecting and reporting data, information from the SEI, MITRE,

and Software Test and Evaluation Plan (STEP) metrics guidebooks, and some new metrics

0 of its own. Some of the metrics include staffing (by labor category, full and part time), effort

(staff hours by functional areas and labor category), size (Source Lines of Code or SLOC),

product and milestone data (planned and actual dates), work progress (defined work items

with exit criteria), complexity, and numbers of units coded per month.

A-21

Software metrics are included as a part of the software management handbook and

a half-day training course offered on management metrics. The course, although not

required, emphasizes systems engineering and includes a portion on software measure-

ment, with role playing, sample metrics, and reports as part of course techniques. It is taped

and publicized among software program managers.

A.5.2 Levels of Reporting

NAVAIR does not require specific data collection mechanisms. There is significant

opposition to central reporting of software measures. Metrics and reports are used at differ-

ent organizational levels. Since metrics are not part of any milestone review, the level to
which software measurements are reported varies. The program manager is normally the

highest level receiving reports, but it is expected that metrics are useful to the engineering

community outside of a program office. NAVAIR is trying to utilize the current Navy man-

agement process and the contractor's development process, augmenting them only where
necessary and with minimal impact. It hopes to collect data from Contract Data Require-
ments Lists (CDRLs) and to automate collection and analysis in order to make measure-
ment painless for program manager and contractor. Improvements to CDRL and Statement

of Work (SOW) definitions are being made to do so.

Currently, only three or four programs have used the NAWC-AD (Warminster) met-
rics guide, and there are no new contracts using it or incorporating metrics into their
requirements. To get more metric users, NAVAIR is trying to have program managers

include metrics on contracts for upgrades, not just new developments. The NAWC-AD

guide addresses how to define, how to collect, and how to analyze software metrics. For

definitions, it uses the SEI checklist approach, which does not require one standard defini-

tion. The most detailed metrics cover support and development progress, and problem

report status.

A.5.3 Tools and Repositories

Although a repository was planned, it did not get included in the first NAVAIR
instruction, partly because of a realignment of responsibilities. When NAVAIR mandated

reporting of software size, there was concern from laboratories because they were afraid

their funding would be affected by the reported metrics. As a result, there are currently only
two projects in the NAWC-AD database and comparison is difficult. There are no tools used

currently that can be provided to contractors, although some support activities have SLOC

A-22

counters. The challenge is how to weight and evaluate different metrics once they are avail-

able (e.g., how does complexity of units affect the project staffing).
0

A.5.4 Best Practices and Lessons Learned

NAVAIR Avionics Systems Engineering Division successfully identified and

defined a set of nine metrics for use in monitoring the technical acquisition of software

* associated with avionics systems. Application of these metrics to contracts has initiated dis-

cussions with industry on the acceptability of alternate metrics that provide similar infor-

mation but may be more readily available. More attention needs to be given to real metrics

needs and how easy metrics are to collect. Some issues that need to be addressed are unam-

* biguous definitions, linking data collection to the contracting and software process, making

sure the analysis process addresses real issues, and that the feedback and reporting process

involves the contractor and project or program manager.

A.5.5 Future Plans and Directions0
NAVAIR recommends that the research community (1) look for measurements in

the requirements area (need more than the stability measurement); (2) look for measure-

ments in the systems engineering process;(3) look for different ways to analyze problem

* reports (source of problem, when identified, necessary corrections), and (4) calibrate cost

models with the metrics currently being collected. NAVAIR would like to have a CDRL

that would require contractors to provide metrics data on magnetic media in a transferable

format such as for a spreadsheet. It also feels that it is very important for government pro-

gram managers to become better educated in the importance and use of metrics.

0

A-23

0

A.6 NAVAL UNDERSEA WARFARE CENTER (NUWC)

The Naval Underwater Systems Command (NUWC) has eight years experience

* with the use of metrics. By 1991 NUWC was experimenting with a software assessment

process based on the use of software metrics [NUSC 1991]. Its goal was to obtain an

objective evaluation of software development processes and products for large-scale DoD

and commercial programs, based upon quantitative measures [McGarryJ 1993]. NUWC

* metrics objectives are to manage software processes and products, to improve software

system quality, and to refine software cost models. By mid-1992, it extended its metrics

objectives to include software reuse with particular emphasis on design, code, commercial

off-the-shelf (COTS) and non-development item (NDI) software, and firmware reuse

[McGarryJ 1992a] [McGarryJ 1992b].

NUWC places metrics on contract and performs independent data analysis for
programs, which it shares with its contractors. It has no training policy and no funding for

training.

A.6.1 Metrics and Reports

NUWC advocates the use of metrics within the context of its quantitative software

development assessment process. The software development assessment process has four
* subprocesses:

" Software issue definition: Software process and product issues are identified

and prioritized, so that subsequent measurement and analysis efforts can be

focused and cost-effective. Issues define the measurements that will be applied

to the program.

" Software attribute measurement: Defined software measures are applied to the

software development processes and products.

0 0 Software indicator generation: Reports and graphs are developed based on anal-

ysis of the measurement data.

" Software quantitative assessment: Software development issues are clarified

0 and their impact evaluated. Correlations are made between process issues and

product characteristics, and recommendations for improvement are generated.

Because the set of measures used for a particular program is based on unique

program characteristics and resulting development issues, there is no standard metrics set.

• However, measurements dealing with software size, development effort, schedule, and

A-25

errors have been identified as core measures appropriate for all programs. An example set

of process and product measures for a typical DoD software development program includes

process measures of staffing, effort, facilities, cost performance, productivity, progress S

(milestones, activities, functions, products), stability, dependencies, and standards

conformance; and product measures of size, defects, completeness, stability (requirements,

design, code, interfaces, product allocations), consistency, complexity, traceability,

reliability, and efficiency. 0

A.6.2 Levels of Reporting

The primary intended user of the metrics program is the program manager-the

metrics captured and the target audience are at that level. 0

A.6.3 Tools and Repositories

NUWC has developed a software metrics database for those systems it is

monitoring. It operates on multiple platforms and has been built using commercially 0

available database engines and support applications. It includes a proprietary software

measurement schema design that allows the database functions to be adapted to different

data sets and measurement methodologies.

The NUWC work is beginning to identify a number of tools and tool categories that 0

support the four phases of its software assessment process [McGarryJ 1993, McGarryJ

1994].

A.6.4 Best Practices and Lessons Learned 0

There are several factors that can have an adverse effect on the implementation of

a metrics program:

"• Metrics assessments that do not support program objectives

"* Lack of understanding of metrics by users

"• Metrics mistrust

Best practices and lessons learned during software metrics implementation include

the following [NUSC 1991, McGarryJ 1992b]: S

• Metrics requirements should be issue driven and tailored to specific program

characteristics.

• Metrics are part of the overall program management process. S

A-26

0 Access to the software parameter data and interim software products (code) of

contractors is mandatory.

* The focus should be on source level (CSU-level) software measurements.

• Plans, actuals, and changes should be measured.

• Metrics are indicators, not absolutes.

• Metrics must be understood and used properly.

• Multiple metrics should be used.

• Quantitative and subjective assessments should be integrated.

* Direct subcontractor insight is important.

* Program-to-program comparisons must be carefully addressed.

NUWC experience indicates that software product quality is related directly to the
nature of the development process and that metrics must be tailored to the software

development approach (program acquisition, technical and management characteristics),
not the reverse. Part of the reason that program offices have not implemented metrics

policy may be that metrics collection and use are not correlated to a return on investment.

0 Finally, guidance documents should not be too low level: they must be adaptable to the
processes of individual software development organizations. Higher-level descriptions

with good tailoring guidelines are more beneficial.

A.6.5 Future Plans and Directions

In the future the Navy hopes to get metrics comprehensively implemented through

Flag-level readiness reviews. Program executive officers will establish their own policies

for collecting metrics across their programs.

A-27

A.7 AIR FORCE MATERIEL COMMAND (AFMC)

This summary addresses activity of the Air Force Materiel Command (AFMC)

Metrics Task Team. It conveys certain perceptions of command-wide metrics activities, but

it is not intended as an overall report on AFMC's use and implementation of software met-

rics.

* The AFMC Embedded Software Management Plan ("balloting draft," dated 1993)

drives the work of the AFMC Metrics Task Team. The Plan has evolved since 1992 in

response to embedded software management issues identified within AFMC's predecessor

components, the Air Force Systems Command and the Air Force Logistics Command. The
* Plan establishes 24 priorities, and priority number 5 is the establishment of a metrics pro-

gram for software development and sustainment. AFMC centers (e.g., logistics centers,

product centers such as the Electronic Systems Center or the Space and Missile Center, and

laboratories such as the Arnold Engineering Development Center) participate on the Met-

rics Task Team.

The Task Team's objectives, as documented in the Plan, are to define specific soft-

ware metrics requirements, compile metrics examples, and develop application guidelines

to support the following:

* Management visibility and control of software development within a program

development.

* Product quality.

* Process improvement.

A.7.1 Metrics and Reports

The Task Team addresses only embedded software, not management information or

9 automated information systems (i.e., not management information systems (MIS) or auto-

mated information systems (AIS)). DOD-STD-2167A and DOD-STD-2168 are considered

the principal extant policies that imply but do not dictate use of software metrics.

The Task Team's effort is influenced by significant experience data and perceptions

about the state of software measurements. From workshops and survey data, the Task Team

determined that little was being done with metrics within AFMC. If metrics are being col-
lected according to the pertinent AF pamphlet 800-48, the resulting data is not being used

in acquisition and program management.

A-29

Although there may be substantial metrics effort in the technical community at

large, much of it is driven by academic concerns, and end-user needs and experience are

not being accommodated. The Task Team is therefore seeking to join or influence other

metrics efforts (e.g., Defense Information Systems Agency (DISA) and Joint Logistics

Commanders (JLC)), to gain leadership in metrics evolution where important to AFMC

centers, and to evolve experience-based metrics application guidance for AFMC's embed-

ded software programs. The Team is working to influence revision of the draft Software
Development and Documentation standard (MIL-STD-498) so that it will adequately

address measurement needs.

A.7.2 Levels of Reporting

The Task Team perceives that top-down direction, e.g., from DoD, is counter-pro-
ductive and time is needed at the working level for total quality management ideas to suc-
ceed. One manifestation of this view was the Team's influence on a draft policy
memorandum that was contemplated by Air Force Headquarters for implementing "core

metrics" recommendations based on Software Engineering Institute and Army Software
Test and Evaluation (STEP) results. The policy has been completed with recommended

changes from the Task Team, and has been released.

A.7.3 Tools and Repositories 0

Neither AFMC or the Task Team plans to recommend a command-wide repository

to compare organizations and programs.

A.7.4 Best Practices and Lessons Learned

"Buy-in" at the user level and endorsement at command level are essential for a suc-

cessful metrics program. Lack of these explains the limited use of software metrics today.

A.7.5 Future Plans and Directions

A significant Task Team objective is to have a common guide for metrics use across

all Air Force development and maintenance programs. Its work also addresses the issue of

a common "core" set of software metrics. But the Team has not decided whether a common

set is feasible, given the organizational and program differences across the Air Force.

This is the Team's current schedule of work and expected completion dates:

• Researching historical measurement programs (March 1994)

A-30

• Collecting metrics on two pilot programs at each AFMC center and sharing

resulting data (April 1994)

* Developing draft metrics handbook based on centers' experience (September

1994)

* Coordinating and releasing the prototype metrics handbook (January 1995)

* Using the prototype metrics handbook (January 1995 to January 1996)

* Building training plans for Air Force-wide implementation (October 1995)

• Offering training through the Air Force Institute of Technology (AFIT) and the

Defense Systems Management College (DSMC) (January 1996)

* Evaluating and updating the handbook (March to June 1996)

* Releasing revised handbook (October 1996)

A-31

0

A.8 AIR FORCE ELECTRONICS SYSTEM CENTER (ESC)

The Electronics System Center (ESC) has had a crucial role in development and

acquisition of major Air Force systems dating back to the beginning of the Cold War.

Consequently, it has a lengthy history of evolving and attempting to implement software

measurements. ESC provided the seminal metrics work of the mid- 1980s, ESD-TR-85-145

[Mitre 1985], which is still being used.

A.8.1 Metrics and Reports

For lack of senior management emphasis in recent years, little has been done in new

metrics development, technology transfer, and implementation for program management.

No Air Force or ESC regulations exist that mandate the use and reporting of metrics.

Nonetheless, acquisition programs are "advised" to apply measurement as described in AF

pamphlet 800-48 (superceding AF 800-43) or to monitor software development per

management indicators described in ESD TR 88-001 [Schultz 1988].

0The recommended metrics address software size, personnel, volatility, computer

resources, design complexity, schedule, design progress, development progress (computer

software component (CSC) and computer software unit (CSU)), testing progress,

incremental release content

A.8.2 Reporting of Metrics

The available guidance recommends reporting metrics to the program executive

officer (PEO) level but this is not done in practice. Metrics are only reported to the

individual program office level. It is perceived that PEOs are not interested in software as

a distinct issue, and instead focus on system-level issues or projects as a whole.

A.8.3 Tools and Repository

Three ESC program offices are starting to use a metrics package called Decision

Vision 1. This tool works through a development environment and collects data

unintrusively, covering more metrics than AF pamphlet 800-43.

A.8.4 Best Practices and Lessons Learned

Noteworthy Air Force programs that are collecting metrics using ESD TR 88-

001 guidance include JSTARS (Joint Surveillance Target Attack Radar System)

and CCPDS-R (Command Center Processing and Display System Replace-

ment).

A-33

"* Air Force has not provided for an adequate level of metrics training.

"* Manual data collection and metrics calculations are problems requiring better

tools and automation.

A.8.5 Future Plans and Directions

Information on the future plans of ESC was not available at the time of publication.

A-34

A.9 AIR FORCE ROME LABORATORY

Rome Laboratory is one of the Air Force's principal engineering and technology

0 research organizations. Rome Lab has actively supported software metrics research since

the mid-1970s. An early program produced the Software Quality Framework [RL 1985].

This work formed the basis for the IEEE Standard for a Software Quality Metrics Method-

ology [IEEE 1992] and ISO Software Product Evaluation- Quality Characteristics and

0 Guidelines for Their Use [ISO 1990]. The Data Analysis Center for Software (DACS) also

started out as part of an early Rome Lab software metrics data collection program.

The cornerstone of Rome Lab's current metrics work is the Software Quality Tech-
nology Transfer Consortium. This consortium was formed as a joint applied research and

development initiative between Rome Lab and several corporations as a mechanism to

transfer software engineering measurement technology into the U.S. defense industry. The

consortium promotes the application of software quality methods and tools, and the
exchange of experiences and data among participating organizations. Data collected by the

participants will be used to validate and modify software quality models.

The current software measurement program is one of several programs under the

Software Technology Division's Engineering Branch. Other research areas within the Soft-
* ware Technology Division include artificial intelligence, prototype tool development, soft-

ware requirements, and high performance computing.

A.9.1 Metrics and Reports

Rome Lab is a research organization rather than a production software developer

and, therefore, does not routinely use software metrics to manage its programs. It has pro-

duced a procedures guide for implementing the Software Quality Framework that outlines

approaches to metrics data collection and includes descriptions of useful reports [RL 1992].

* Rome Lab currently sponsors the following areas of software metrics research:

" Reliability metrics for distributed systems.

" Statistical methods for designing measurement experiments and analyzing soft-

ware metrics data.

" Measures of scrap and rework within the software development process.

" A quality inspection process that adds quality factors to the checklists of defects

used in Fagan-style software inspections.

A-35

0

Rome Lab also sponsors annual workshops on software quality measurement,

where researchers share results and review the progress of their work.

A.9.2 Levels of Reporting -

Rome Lab's current focus is on software quality measurements that Air Force con-

tractors would report to program offices, and derived metrics that program offices would

report to headquarters.

A.9.3 Tools and Repositories

The Quality Evaluation System (QUES) [RL 1991] is a Rome Laboratory tool that

automates aspects of the Software Quality Framework. QUES accepts collected data, com-

putes quality metrics, and displays the results. Automated data collection tools include stat-

ic analyzers for Ada and Fortran.

Software Quality Technology Transfer Consortium members are currently building

a database of software reliability and maintainability factors gathered from systems they

have developed.

A.9.4 Best Practices and Lessons Learned

It is not clear how some quality models can be applied to improve Air Force soft-

ware development. Most models were developed and tested on incomplete, ideal, or old

metrics data sets. These models need to be validated and updated. Procedures for using

them also need to be developed.

Many software development organizations are not mature enough to use models

and resulting process adjustment recommendations. 0

A.9.5 Future Plans and Directions

The current direction of Rome Lab's software metrics research is to continue to
develop and validate procedures and tools to support models of software quality, refine

existing models, extend software reliability models, collect more operational data, and

develop novel measures based on code.

A prototype of the Air Force's National Software Data and Information Repository

is currently in the planning stage.

A-36

A.10 DEFENSE INFORMATION SYSTEMS AGENCY (DISA)

Current Defense Information Systems Agency (DISA) activities in software

metrics are being conducted in the Center for Standards (CFS) and the Center for

Information Management (CIM).

DISA is the Executive Agent for the Department of Defense (DoD) Information

Technology (IT) Standards Program, and as such, DISA is responsible for integrating,

coordinating, and managing all DoD IT standards activities. Within DISA, the Joint

Interoperability and Engineering Organization (JIEO) CFS is assigned Executive Agency

responsibilities for the IT Standards Program [DISA 1993a], including software metrics

standards.

In conjunction with the Joint Logistics Commanders, DISA JIEO/CFS is drafting a

DoD handbook (MIL-HDBK-SWM) to support the new SDD (MIL-STD-498, Software

Development and Documentation) which will require the use of metrics. Enforcement of

the metrics handbook is currently not planned. The handbook will provide acquisition

managers with a reference guideline and software engineering personnel with rationale for

metrics selection when establishing measurement efforts. Intended users include program

offices, in-house development activities, and contractors conducting software-related

activities. The handbook is for use by all DoD components, and would be applicable

throughout the software life cycle. It will include both process (management) and product

(quality) measurements. The handbook's sponsor, the Joint Logistics Commanders, has

stated that the first priority is to support the acquisition of weapon systems, so the

handbook's impact on automated information systems and general information

management applications remains to be seen.

Activities in CIM address needs of the Central Design Agencies (CDAs), program

managers, and also the DISA Software Reuse Program (SRP). DISA is working to

understand the current state of metrics practice within DoD, DISA contractors, and industry

at large. Much of the internal DISA motivation comes from a recognition that it needs to

improve the processes by which it develops and maintains software intensive systems, but

to do so it must be able to measure where it needs to improve and how well it is improving.

There is a belief that the DoD IT community lags behind the weapon system community in

understanding the need for metrics and in desire to overcome the shortfall between

measurement capabilities and need.

A-37

DISA has established a Software Metrics Standards Working Group under the

authority of DoD 4120.3, Defense Standardization and Specification Program, Policies,
Procedures, and Instructions, to promote information flow beyond the routine exchange of

correspondence and expedite the Software Metrics Initiative. It includes members from
DISA CIM, the Army, Air Force, Navy, Defense Mapping Agency, Defense Intelligence

Agency, the Software Productivity Consortium, and a support contractor, Logicon.

DISA is working with CDAs to pilot the use of the Software Engineering Institute's
(SEI) core metrics (size, effort, schedule, quality) at eight volunteer CDA locations. The

current DISA role is seen as infusing good practices into the CDAs, rather than oversight.
The metrics data is intended to be helpful to the CDAs in managing their projects better and
improving their software practices. Each CDA typically has three to four projects in the
metrics program. DISA had a four-day workshop for metrics champions from each CDA
site, giving training on the SEI core metrics. Site champions meet with DISA CIM monthly.

The pilot program is expected to run for one year, with the data collection having begun in
July 1993.

DISA also has a reuse metrics program operated by the DISA/JIEO/CIM Center for
Reuse Operations as part of the Software Reuse Program. DISA's Software Reuse Metrics

Plan [Chubin 1993] describes a three-phase approach. The first phase focuses primarily on

a repository and the nature and scope of interaction between a user and the repository. The
second phase, lasting through FY 1994, focuses on identifying the costs and benefits of the

SRP through pilot projects. The third phase will focus on a deeper analyses of the reuse
process, including the evolving areas of domain analysis and design. The plan defines

collection forms and reports that should be produced from the data collected. The goal of

the program is to improve the Reuse program through measurements that can (1) enable
understanding of reuse processes, (2) evaluate the quality of products of software
development and maintenance, (3) control the activities of the reuse process, (4) forecast

future reuse needs based on current needs.

A.10.1 Levels of Reporting

DISA recognizes three levels of reporting: oversight, program management and
technical. The initial focus is to satisfy the needs of program managers [DISA 1993b]. A
high priority is to keep the collected metrics at the CDA level. The Reuse Plan is consistent

with this view.

A-38

A.10.2 Tools and Repositories

Except for the SRP, DISA is not currently pursuing metrics repository activities or

tools. The intent is to work with others already active in these areas, such as the Air Force,

and to focus on the understanding and guidance needed for starting small, identifying the

metrics user audience, and knowing how the information will be used prior to its collection.

A.10.3 Best Practices and Lessons Learned

One problem identified as part of early attempts to introduce metrics into the CDAs

is a lack of infrastructure for collecting metrics, e.g., CDAs often have no method for
collecting information on hours worked on software-they use manual data collection
processes, they do not track defects, and data is collected differently by each center. DISA

feels that the research and development community needs to work on additional tools to

automate collection, analyses, and reporting of measurements.

A.10.4 Future Plans and Directions

DISA plans a sequence of working group meetings to establish sample goals and

questions to be answered by metrics collection, identification of 10 to 15 priority metrics,

and suggestions for metrics presentation. It plans to have a complete draft metrics
handbook available in the third quarter of 1994. DISA feels that the DoD needs to establish

a policy to encourage agencies to collect and use metrics, and it thinks that the Defense
Systems Management College (DSMC) needs to add metrics to its teaching subjects.

A-39

0

A.11 JOINT LOGISTICS COMMANDERS (JLC)

Joint Logistics Commanders (JLC) are responsible for logistical operations within

the Army, Navy, and Air Force. They have established a Computer Resource Management

(CRM) group for developing solutions to problems that the JLC face in the area of

computer and software intensive systems. The JLC have had a continuing interest in

metrics. The JLC-CRM produced a draft metrics handbook in 1992 to accompany DOD-

STD-2167A. They have conducted two workshops, Orlando HI and San Antonio I, where

software measurement was the subject of several panels. The workshop reports

documented the consensus that a measurement approach similar to that of the Air Force

indicators would be a good foundation for metrics in acquisition, development, and support
[JLC1993a]. The individual Services currently have metrics initiatives which are based on

the JLC workshop information as modified by their own needs.

The CRM has three significant metrics activities currently. The JLC-CRM and the

Defense Information Systems Agency (DISA) are jointly involved in developing a

handbook to support measurement in conjunction with MIL-STD-498. This handbook,

known as MIL-HDBK-SWM, also is mentioned in the DISA report in this Appendix. Two

other efforts not detailed here are reliability/maintainability metrics validation, and work

on using metrics to define system readiness for test.

A.1.1 Metrics and Reports

To assist in the MIL-HDBK-SWM handbook effort, the CRM has established a

working group composed of members from Army, Navy, Air Force, Marines, DISA, and

the Defense Logistics Agency (DLA). JLC prefers the handbook to emphasize weapon

system software acquisition. Another JLC objective is for the handbook to contain

complete instructions for computer acquisition personnel across all of the Services and

logistics agencies.

The handbook is evolving with four distinct areas of content. One area provides an

overview of measurement from a program manager's viewpoint, identifying typical issues,

constraints, and questions. The second area identifies workable metrics in three levels: a

* basic set, an enhanced set, and an advanced set. A third area addresses step by step detailed

instructions for implementation. The fourth content area provides statement of work and

data item description guidance for implementing the handbook in solicitations.

Currently, Virginia Polytechnical and State University, Blacksburg, Virginia, is

validating metrics on reliability and maintainability by following several software

A-41

development contracts. It expects to validate design indicators through statistical

comparison [JLC1991a, JLC1993a]. The work started under the Navy, but was transitioned

to the JLC in order to obtain Tri-Service and industry perspectives. The validation project

is due to complete in 1994, though not tied to release of the Software Development and

Documentation (SDD) metrics handbook.

A.11.2 Levels of Reporting

Currently, there is no JLC policy prescribing use of metrics, and enforcement of

standard metrics is not a JLC-CRM interest. JLC has no definite plan to define

organizational levels that will collect metrics, although the scope of the working group's

charter calls for metrics at various levels (e.g., oversight, buy-off).

A.11.3 Tools and Repository

The JLC is not considering a central repository for collecting metrics under the new
handbook. They believe that data would not be comparable because projects would be

dissimilar. The JLC-CRM has another working group addressing tools, and Virginia

Polytechnical has also developed a language analyzer for Ada, a DOD-STD-2167A

document analyzer, and a report generator to support the subset of metrics it is validating.

It is too early to tell if tools will be included in the SDD metrics handbook.

A.11.4 Best Practices and Lessons Learned

Spreadsheets were provided for collecting and reporting measurement data for the

DOD-STD-2167A handbook but they were not used. There was no senior management

support, commitment, or enforcement. Some commands tasked contractors to collect the

data, while others used the DLA offices. It required very time-consuming data collection

efforts, and payback was minimal as contractors and program managers were not using the

data. While the metrics were not validated, it was determined that Halstead's complexity

measures were not effective.

A.11.5 Future Plans and Directions

The JLC/DISA working group plans to finalize the Charter of the Working Group

at its January 1994 meeting. Research and development is not in the scope of the CRM

charter.

Training needs have not been addressed yet, but there is a JLC-CRM working group

on training. The current plan is to use the same training support as provided to SDD.

A-42

0

Working group participants do recommend establishing a DoD-wide metrics policy

to encourage agencies. to collect and use metrics. Some also believe that the Defense

* Systems Management College (DSMC) should add software metrics to its courses.

Working group members also recommend that DoD identify or provide additional tools to

automate metrics collection, analysis, and reporting.

0

0

0

0

0

0

A-43

0

A.12 SOFI'WARE ENGINEERING INSTITUTE (SEI)

The Software Engineering Institute (SEI) is a federally funded research and

development center (FFRDC) affiliated with Carnegie Mellon University. Both are located

in Pittsburgh, Pennsylvania. The SEI's mission is to "advance the state of the software

engineering practice to improve the quality of mission-critical computer systems." One of

its major program areas is the "software engineering process" that includes the "software

process measurement project." The objective of this project is to promote and improve the

use of measurement in managing, acquiring, and supporting software systems [SEI 1993].

As part of SEI's efforts to promote and improve the use of measurement, SEI has

0 published a number of documents on software metrics. These include a curriculum module

[Mills 1988], an explanation of how program managers can use metrics [Rozum 1992a], a

comparison of software metrics and SEI's Capability Maturity Model (CMM)

[McWhinney 1992], and even a concept study for a national software engineering database

[Van Verth 1992].

In 1992, SEI's software process measurement project was asked by the Department

of Defense (DoD) to develop materials and guidelines for a core set of measures to be used

in DoD software acquisition, development, and support programs. The objective was to

produce measures that would serve as a basis for collecting well-understood and consistent

data throughout the DoD. This core set was of four metrics developed and provided as a

capstone document [Carleton 1992], with three documents providing additional detail.

A.12.1 Metrics and Reports

The SEI recommends that at least four basic measures should be used by the DoD

for acquiring, developing, and maintaining software systems. These measures are shown in

Table A-3.

0 Each of these metrics can be defined in slightly different ways. To resolve this

problem, SEI provides a set of checklists and forms to define each measure more precisely.

SEI also provides recommended basic definitions for each term using these forms. The

checklist method of defining key terms is very useful because it clearly shows definition

* alternatives.

SEI's definition of source lines of code (SLOC) is possibly the most contentious

because there are so many different methods for measuring software size. SEI recommends

measuring physical lines of code, excluding blank and comment-only lines. Advantages of

A-45

0

this approach include the ease of application, ease of definition, reduced dependency on a

particular programming language, and the fact that many cost model databases use this

measure. A significant disadvantage is that this definition is much more subject to

variations in programming style than logical lines of code. SEI did not include function

points; one reason is that although they appear to be effective in business environments,

they have not enjoyed widespread success in other environments (such as embedded

systems or computation-intensive systems). 0

Table A-3. SEr's Recommended Core Metricsa

Software Characteristics
Unit of Measure Addres s Described InAddressed

Counts of physical source lines of Size, progress, reuse [Park 92]
code (SLOC)

Counts of staff-hours expended Effort, cost, resource alloca- [Goethert 92]
tions

Calendar dates (tied to milestones, Schedule
reviews and audits, and deliverable
products)

Counts of software problems and Quality, readiness for delivery, [Florac 92]
defects improvement trends

a. Source: [Carleton 1993b]

SEI's definition of effort is the total hours of time expended by a member of the

staff. It includes direct labor and excludes indirect labor. It includes regular time and 0

overtime, whether or not it is compensated, by all workers (including part-time and

subcontracted). All product-related effort is included, including system requirements

analysis through deployment, management, software quality assurance, configuration

management, training, and support. Hours were selected instead of weeks or months, since •

there is no "standard" work-week or work-month. Overtime is to be separately reported.

Including unpaid overtime is interesting and in many ways beneficial, since unpaid

overtime often hides productivity improvements. However, including this value makes this

measurement more difficult to obtain, since this information is rarely collected. It also

makes the metric's use for cost estimation more problematic since this cost is not directly

borne by the contractor or government. Significant amounts of unpaid overtime may be

unreported in spite of this requirement, causing mismeasurement.

A-46

SEI's definition of schedule metrics are the actual and planned dates for various

milestones, reviews, and audits (such as Software Specification Review and code

complete) for a selected set of exit completion criteria (such as internal review complete,

formal review with customer complete, all action items closed, and quality assurance sign-

off). SEI's key contribution here is the definition of multiple dates for some milestones (for

example, separating review complete from action items complete).

SEI's definition of counts of software problems and defects includes a definition of

a software problem. A software problem is defined as a defect in the requirements, design,

code, or operational document. Excluded are test case defects, hardware or operating

system problems, and new (or enhanced) requirements.

SEI provides sample reporting forms for all of these metrics.

A.12.2 Levels of Reporting

The SEI intends for these metrics to be used by the DoD, implying that the SEI

expects these metrics to be reported by software development contractors to their

respective DoD sponsors.

A.12.3 Tools and Repositories

The SET does not provide any specific tools, though it does recommend that the

DoD develop and distribute such tools. SEI does note that their recommended size measure

(physical lines of code) is easier to develop tools for than size measures based on logical

lines of code. The SEI has developed a concept study for a national software engineering
database, but has not committed itself to plan or implement such a database [Van Verth 92].

A.12.4 Best Practices and Lessons Learned

SEI recommends that the DoD consider the following actions for implementing a

DoD metrics program [Carleton 1993a]:

• Develop instructional and training material for the metrics set.

• Offer an initial pilot test period before a metrics set is mandated.

• Designate and staff an organization to respond to user questions and provide

advice and assistance to organizations implementing these practices.

• Prepare and distribute software to assist in automatically collecting the required

measures.

A-47

"* Provide for a review and revision cycle for updating the framework metrics doc-

uments, and plan for republishing and redistributing these update.

" Consider extending the set of measures. In particular, defining counts of soft-

ware units (or functions), rules for logical source statements for principle DoD

languages, and dollar cost measures (as an analog to staff-hours).

Rifkin and Cox [Rifkin 1991] performed site surveys of organizations with

reputations for excellent measurement practices, and their summary provides a number of

useful lessons learned. They found that in all successful organizations the following:

"• Errors had been decriminalized. Defects were made public-no one was sur-

prised by them, and everyone was working to eliminate them. 9

"• Measurement was part of a larger effort for software improvement. Measure-

ment was not added on, appended, or made to stand alone.

The following patterns were true for most successful organizations and can be

considered suggestions:

" Measurement Content: Relatively few (1 to 20) measures were collected which

were useful and easy to obtain. Starting small was viewed as important, and

many only collected one metric (number of defects). Measures used were obvi- 0
ously practical, incurred low collection cost and effort, could be presented sim-

ply, and were rigorously defined. Most provided automated tool support to
minimize the impact of measurement on software developers. Common metrics

included number of defects, effort (labor hours) and size (lines of code). 9

" People: Managers must be motivated, measurement goals must be focused and

articulated, all stakeholders must be involved, all affected persons must be edu-

cated and trained, and trust must be earned. In particular, no harm should come

to the bearer of bad news. One common goal was to ascertain where to apply0

additional resources to improve the software product or process.

"* Program: It is best to take an evolutionary approach, plan to "throw one away,"

get the right information to the right people, and strive for an initial success.

" Implementation: Measurement should "add value," developers should be

empowered to use measurement information, a "whole process" view should be

taken, and it must be understood that adoption takes time.

A

A-48

A.12.5 Future Plans and Directions

SEI is considering a number of future directions. SEI is considering defining

measurements for reliability, complexity, and process understanding (such as process

control and cause identification and defect prevention). Methods for improving software

cost estimation are also being considered. Planned future technical reports subjects include

instructions for establishing a measurement process and a description of cost estimating

practices.

SEI plans to assist the metrics programs of specific organizations. SEI is also

considering participation in the software metric standards efforts of the Federal

government, the Institute of Electrical and Electronics Engineers (IEEE), Inc., and the

International Organization for Standardization (ISO).

A-49

A.13 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA)

The National Aeronautics and Space Administration (NASA) consists of nine

autonomous centers. The Goddard Space Flight Center in Greenbelt, Maryland, is the larg-

est and most diverse. Goddard's primary mission is scientific investigation, largely support-

ed through unmanned, earth-orbiting space craft missions.

NASA's Software Engineering Laboratory (SEL) was started in 1976 as a cooper-

ative effort between NASA-Goddard, the University of Maryland (Computer Science

Department), College Park, Maryland, and Computer Sciences Corporation. The SEL is an

integral part of Goddard's Flight Dynamics Division, which develops ground support sys-

tems (e.g., mission planning, altitude and orbit determination) on an annual software bud-

get in the $20 to $30 million range. Most of the systems are non-embedded and mid-sized,

in the 100 KSLOC range. SEL's objective is to learn from every software project in the

Flight Dynamics Division. To date, 115 software projects have been tracked.

There are some software standards at NASA-Goddard but they do not include the

use of metrics, except in the SEL. Everyone within the Flight Dynamics Division and SEL

follows additional requirements set forth in a series of standards, including the overall pol-

icy document called Manager's Handbook for Software Development. This handbook is

based on data collected during SEL experiments. Individual project data is summarized to

produce a model for the software development process (e.g., errors per KSLOC is four at

code and unit test, two at integration test, one at functional test). If a project comes in with

a different profile than the model suggests, it is examined more closely. In general, metrics

goals are achieved by strong personal leadership and management, rather than by policy.

In 1992 a NASA-wide effort was started to encourage local organizations to collect

measurement data to benefit their software development programs. Five NASA centers cur-

rently participate, each having a development-oriented person as a process improvement

champion. Current efforts include the development of a NASA-wide Software Measure-

ment Guidebook to provide guidance in starting a measurement program. The guidebook

recommends a core set of measurements but leaves the detailed definition of each measure

to the local organizations. This document was completed in April 1994.

A.13.1 Metrics and Reports

From the perspective of the SEL, there are three reasons to measure: to attain an

understanding of the engineering principles of software (e.g. the relationship between size

and cost, comparison of flowcharts vs. program design language (PDL), evaluation of

A-51

structured programming methodology), to manage ongoing projects, and to guide process
improvement. More particular objectives of a measurement program will depend on the
particular center's mission. For example, at Goddard the objective may be to reduce soft-
ware costs while at the Johnson Space Center, Houston, Texas, the objective may be to
increase software reliability.

Data collected during an SEL experiment is based on the particular goals of the
experiment, in accordance with the Goal-Question-Metric paradigm developed at the Uni-
versity of Maryland. Development teams are informed of the study's goals, of the derived
questions, and of the types of data to be collected during development. They provide much
of the required data through the use of data collection forms. Their prime goal, however is
to complete the project on time and within budget. Non-development staff personnel are
responsible for metrics data entry, quality assurance, and analysis.

Certain data have been identified as critical and are recommended for collection on
all projects [Valett 1989]. These include schedule dates for phase completion, size and
effort estimates, methodology, environment, and tools used on the project. Also included
are actual effort data, computer utilization data, and counts of software changes and errors
and the relative effort to implement them.

A.13.2 Levels of Reporting

Every project within the SEL is responsible for producing a report that includes sta-
tistics, context, and lessons learned on the project. The report is started during acceptance
test and usually takes about three staff-months of effort to complete. Data and lessons
learned from individual projects have been incorporated in the Manager's Handbook for
Software Development and made available to all personnel within SEL and the Flight

Dynamics Division of NASA-Goddard.

A.13.3 Tools and Repositories

Most data is collected manually, which does not appear to pose any problems. The

Personnel Resource form, which is filled out weekly by each project member, contains
information on the number of hours spend on each activity (predesign, design, read/review
of design, code, read/review of code, unit test, debug, integration test, acceptance test, and
other). The Change Report form, which is completed each time a change is made to code
that has already passed unit test, contains information about the change that was made,
including error information if applicable. The Components Origination form, which is

filled out after a component is unit tested, gives detailed data about the component such as

A-52

its purpose, whether it is new vs. modified vs. old, and the difficulty of developing it. An

Estimation form, which is filled out by project managers after each significant phase or

milestone, gives projections of phase dates, system size, and effort to build the system.

Automated tools are available to collect information on computer utilization, component

change history and growth, and product characteristics such as lines of code (LOC) per

module and the number of statements of each statement type [Valett 1989].

Oracle is used for the SEL data base and for the generation of monthly reports. Pro-

prietary data is not a problem within SEL because of the support contractor relationship.

Since NASA centers have different measurement objectives, NASA does not have a central

database and does not require common metrics.

A.13.4 Best Practices and Lessons Learned

Best practices and lessons learned from over 17 years of experience within the SEL

include the following [McGarryF 1993].

Data collection must not be the dominant element of process improvement:

application of measures is the goal. Organizational focus should be on establish-
ing measurement goals and planning for the usage, benefits, and applications of

the collected measures. Too often, organizations focus on defining a list of mea-
sures and the data collection forms that will be used to collect data. At least three

times as much effort should be spent on analyzing and using collected data as is

spent in data collection.

* Measurement must be focused and well defined to get what you want. SEL's

measurement program today collects 50% less data than it did 10 years ago. The

original data collection effort was too difficult and SEL was uncertain what to

do with the data.

* A measurement program must focus on local improvement, not on comparison

with external organizations. Different organizations have different emphases

(e.g., cost vs. quality vs. security), different product domains (e.g., embedded

vs. non-embedded), and different goals. Because of such differences, it is diffi-

cult if not impossible to derive meaningful results from combining data across

dissimilar domains. There are two corollaries to this emphasis on local usage:

- Define standard local terminology instead of attempting to generate widely

accepted standard definitions.

A-53

- Use measurement data locally: do not expend effort formulating broad,

national databases.

Measurement data will be inexact, incomplete, and fallible. This fact must be

accepted and data analyses designed accordingly.

The process of measurement cannot be significantly automated. Tools can auto-

mate a limited set of routine processes for counting measures such as code size,

code growth, errors, and computer usage. However, humans are necessary to

provide insights into the reasons for errors, changes, and problems.

A.13.5 Future Plans and Directions

The NASA-wide measurement effort is focusing on giving guidance to local orga-

nizations that are interested in metrics. Trial tests are being performed in five centers with
"champion" developers. Once these measurements have been proven successful, others

will follow. NASA plans to publish a Software Measurement Guidebook in April 1994,

which includes guidance for starting a measurement program. The core measures that will

be included include LOC, dates, and schedules. It plans to collect these measures for each

Center.

SEL feels that what is needed is less basic research and more infusion of measure-

ments into the practitioners world (e.g., guidance, how to utilize, how to determine bene-

fits). A stronger awareness should be established between the various programs (e.g., SEI,

NASA, the Advanced Research Projects Agency (ARPA)), without expecting collabora-

tion. They also recommend identifying the impacts and defining better relationships

between various software engineering models (e.g., object-oriented design vs. functional

decomposition, errors vs. different testing strategies, changes in specifications vs. changes

in designs).

A-54

APPENDIX B.

METRICS PROGRAMS OF INDUSTRY ORGANIZATIONS

B-1

Table of Contents

B.1 CO M PA NY A ... B-3

B.2 COM PANY B ... B-11

B.3 CO M PANY C ... B-17

B.4 CO M PA NY D ... B-23

B.5 COM PANY E ... B-27

B.6 CO M PANY F ... B-35

B.7 CO M PANY G ... B-39

B.8 CO M PANY H ... B-43

B .9 CO M PANY I .. B-47

B .10 COM PANY J .. B-49

B-2

B.1 COMPANY A

The information in this report pertains to an electronic systems group within a large

company that is preeminent in both commercial and defense markets. The group, which

contains multiple divisions employing over 450 software engineers, specializes in develop-

ing mission critical software systems for the Department of Defense (DoD).

The group's metrics program began in the 1980s and was influenced by several out-

side metrics initiatives as it evolved. The management metrics defined in AFSCP 800-43

[AFSC 19861 was an early influence. Later influences include the Goal-question-metric

Paradigm of Basili [1984], the Mitre ESD report TR-88-001 [Schultz 1988], and the Soft-

* ware Engineering Institute (SEI) process metrics questions in the SEI report SEI-87-TR-23

[Humphrey 1987].

In 1988, an SEI-assisted assessment found weaknesses in both metrics and process.
As a result, a Software Engineering Process Organization (SEPO) was formed, which

* spawned off 15 working groups, including one on metrics. Since mid-1988, the working

group has been meeting weekly.

A Software Management Manual Policy requires the use of software metrics for all

mission-critical software projects of greater than five labor years. A software metrics hand-

book completed in 1993 describes the metrics set and the metrics-related process and pro-

cedures for implementing the policy.

B.1.1 Metrics and Reports

* The metrics set consists of 27 measures that support the attainment of 5 goals estab-

lished by the SEPO:

* To obtain an SEI maturity level 4 rating

* • To increase software development productivity by 30%.

• To achieve reliable forecasting of the electronic systems group's ability to meet

project cost and schedule objectives.

* To increase software product quality by 30%.

* To improve customer satisfaction by increasing on-time deliveries by 30%.

The first 19 measures in the metrics set derive directly from the 1987 SEI questionnaire
and relate directly to SEPO's first goal of obtaining a level 4 SEI rating. Metrics 20 and

B-3

20a relate to its second goal; metrics 22 and 23 to the third goal; metrics 20b, 20c, 20d,

and 24 to the fourth goal; and metric 20e to the fifth goal.

Metrics usage is optional for projects with less than five labor years of software

effort. Mission-critical software projects between 5 and 30 labor-years in size must use 8

of the 27 metrics (numbers 8, 9, 10, 11, 20, 22, 24, and 25 in the metrics list that follows).

Mission-critical software projects larger than 30 labor years in size are responsible for the

entire set of metrics, although 4 of the metrics are tailorable (numbers 5, 6, 13, and 14) and

may be treated as optional.

Metrics are to be generated monthly and maintained for the duration of a program.

The same metrics may also be generated quarterly and annually to help identify trends.

Quarterly metrics are calculated as a weighted average of a consecutive three-month inter-
val and annual metrics as a weighted average of quarterly data.

During the proposal phase of a program, software engineering managers are

encouraged to get customer approval for using the group's defined metrics set. If such

approval cannot be obtained, software project managers are in the position of having to

obtain software steering committee release from the required internal metrics set.

The 27 Measures

1. Profiles of actual versus planned staffing. The suggested reporting format is

to graph both planned and actual staffing data on one chart, where the y axis rep-
resents the number of staff and the x axis represents time since the start of the

contract, in one month intervals. Optional, additional information could include

actual versus planned experienced staff and unplanned staff losses.

2. Profiles of software size for each CSCI. The suggested format is planned ver-

sus actual size, in Delivered Source Instructions (DSI) for each CSCI (computer

software configuration item), reported in monthly intervals. Data can optionally

be refined by breaking total DSI into new code, modified code, and reused code.

3. Statistics on software design errors. Design errors are Software Errors or

Defects (SEDs) that are traced to the design task. (A software error is a problem

that is detected before submission to formal test, whereas a defect is a problem

detected after submission to formal test.) Cumulative design errors are to be

plotted monthly and compared against historical benchmarks and project events

such as requirements changes.

B-4

0

4. Statistics on code and test errors. Cumulative code and test errors are to be

plotted monthly and compared against historical benchmarks and project

* events.

5. Project and compare design errors to actuals (optional). Estimate the num-

ber of expected design errors to be detected each month of the project, based on

historical data and current project environment. Plot expected and actual data in

0- monthly intervals.

6. Project and compare code and test errors to actuals (optional). Estimate the

number of expected code and test errors to be detected each month of the

* project, based on historical data and current project environment. Plot expected

and actual data in monthly intervals.

7. Profiles of actual versus planned CSUs designed. Plot the number of actual

CSUs (computer software units) designed versus the number of CSUs planned

• to be designed, in monthly intervals.

8. Profiles of actual versus planned CSUs tested. Plot the number of actual

CSUs completing CSU test versus the number of CSUs planned to be complete-

ly tested, in monthly intervals.

9. Profiles of actual versus planned CSUs integrated. Plot the number of actual

versus planned CSUs integrated at the CSCI level, in monthly intervals.

10. Track target computer memory utilization. Graph the actual versus planned

target computer memory utilization in monthly intervals. (Computer memory

utilization is defined as the percent of memory that is unavailable for additional

software-worst case.)

11. Track target computer throughput utilization. Graph the actual versus

planned target computer throughput utilization in monthly intervals. (Computer

throughput utilization is defined as the percent of active CPU time-worst

case.)

12. Track target computer input/output (1/0) channel utilization. Graph the

actual versus planned target computer 1/0 channel utilization in monthly inter-

vals. (Computer I/O channel utilization is defined as the percent of active I/O

channel time-worst case.)

B-5

0

13. Measure and record design and code review coverage (optional). Track the

percentage of CSUs completing the review process each month. This data can

be compared to the percent of elapsed allocated design and code time. (For the 0

review of a CSU to be complete, all associated phase reviews, including Soft-

ware Requirements Specification (SRS)/Interface Requirements Specification

(IRS), CSU design, interfaces, timing constraints, test cases, Software Develop-

ment Files (SDFs), and test results, must be completed, and all resulting action 0
items must be closed.)

14. Measure and record test coverage for each phase of functional testing

(optional). Track the test coverage for each phase of testing each month. Com-

pare the percent coverage to the elapsed allocated test time per phase of func- •

tional testing. (Test coverage is defined as the percent of requirements in the

SRS and IRS verified by test.)

15. Track to closure action items resulting from design reviews. Track the num-

ber of open and closed action items resulting from formal design reviews (SSR

(Software Specification Review), PDR (Preliminary Design Review), and CDR

(Critical Design review)) each month.

16. Track to closure software trouble reports resulting from testing. Track the 0

number of open and closed software trouble reports resulting from testing each

month.

17. Track to closure action items resulting from code reviews. Track the number

of open and closed action items resulting from code reviews each month.

18. Track test progress by deliverable software component and compare to

plan. Track monthly the actual versus planned percent of CSC requirements

(from SRS/IRS) successfully verified by test for each deliverable CSC.

19. Profile of software build/release content versus time. Track monthly the actu-

al versus planned percent of SRS/LRS requirements implemented in the deliver-

able CSCI build.

20. Pulse point charts (produced only for software formally tested).

a. Productivity (DSI/person month) for both developed and reused code each

quarter

B-6

0

(b) Design quality (no. of errors/thousand DSIs) for both developed and reused

code each quarter.

(c) Defect density (no. of defects/thousand DSIs) for both developed and

reused code each month. (No. of defects is calculated one year after formal

testing. Defects are tracked for a period of one year after delivery.).

- (d) The number of on-time and late software deliveries each month and the

number of on-time and late documentation deliveries each month.

21. Labor months expended per CSC over time and DSIs completed for each

CSC. Graph the planned versus actual values for both the total monthly labor

months expended per CSC and the total KDSIs (thousands of DSI) completed

per month per CSC.

22. Track project cost and schedule data both planned and actual. Track

planned versus actual data for project cost and schedule each month. Schedule

information can be represented as percent of completed milestones versus per-

cent of schedule time elapsed.

23. Profile of the number of items changed in the SRS and IRS over time. Track

* the cumulative number of added, deleted, and modified requirements in the SRS
or IRS for each deliverable CSCI each month.

24. Track the total number of open and closed SPRs. Track the cumulative num-

ber of both open and closed software problem reports (SPRs) each month. SPRs

* should be categorized by the phase is which they were introduced and the phase

in which they were detected.

25. Track CSCI progress with respect to the SRS and SDD. Track the actual ver-

sus planned number of requirements completed in the SRS, SDD (Software

Design Document), IRS, and IDD (Interface Design Document) each month.

26. Track the software development tools. Track the actual versus required date

of availability of each software development tool.

* 27. Track the progress of the documentation. Track the actual versus planned

number of pages of deliverable documentation completed, in monthly incre-

ments.

B-7

B.1.2 Levels of Reporting

Most of the metrics data is used at the project level in day-to-day management of

the project. The most useful of these metrics are those involving timing, size, manpower

loading, cost, schedule, defects and errors, and trend analysis within a program.

Certain measures are collected across all divisions, analyzed, and reported quarterly

to upper management. These measures include productivity and quality measures for the

group as a whole (see metric 20, pulse point charts). Upper management is enthusiastic

about this information, which it is currently getting from its software, manufacturing, engi-

neering, and procurement organizations. However, some software project managers do not

feel it is worth the level of effort it takes to produce the reports. From their perspective, the

reports are often not insightful because they combine across many projects, not helping a

specific project. This is especially true for productivity reports across product domains.

Productivity comparisons are much more valid within a domain.

B.1.3 Tools and Repositories

Standard forms exist to aid in the collection of the standard metrics. Completed

forms are sent monthly to the SEPO Software Metrics Working Group and to the project

Software Engineering Manager. The full set of 27 metrics requires 90 database cells, as

well as an additional 53 cells devoted to background information. There are three types of

databases for storing the metrics data:

1. All project status metrics data (metrics 1-2, 5-19, 22, 24-27) are kept in a project

database that must be maintained by someone from the project.

2. All process metrics data (metrics 3, 4, 20, 23) are retained across projects in a

process metrics database.

3. All financial metrics data (metric 21) are retained across projects in a financial

metrics database.

The SEPO Software Metrics Working Group is responsible for maintaining the latter two

databases.

Several data collection and support tools are available, including an internal LOC

counting tool that supports Ada, Jovial, Fortran, VRTL, TRL, Pascal, and C, a requirements

tracking tool (RTRACE), a program management tool (Microframe Program Manager),

Paradox and FoxPro relational database tools, Excel and Lotus 123, and Harvard Graphics.

B-8

B.1.4 Best Practices and Lessons Learned

This group had several problems and lessons learned in trying to standardize met-

0 rics. Examples include the following:

" Lines of code (LOC) is used to normalize productivity and quality data, but

LOC always changes and is difficult to collect monthly. (This is why the "pulse

points" are only reported for projects whose software has been formally tested.)

" For quality reports, design quality is defined based on the number of problems

found from the start of integration to functional quality testing. Defect density

is defined based on the number of problems found up to one year after function-

al quality testing. A problem occurs in defining design quality versus defect

density for programs that do not have a formal software test.

" The software work breakdown structure needs four-digit charge numbers to

accurately account for where effort is spent, but there is resistance by individual

engineers to recall too many charge numbers or to spend too much time

accounting for such specific details of their time.

Other problem areas include the following:

Data collection is manual and hence problematic. There was much resistance to

collecting the amount of data desired by the SEPO. Consequently, an Excel

spreadsheet was developed to aid in reporting and summarizing the metrics

data. However, the spreadsheet was also too complicated. It has been simplified

and a pilot is underway to see how it will be accepted.

It is difficult to get metrics information on software that was developed before

the metrics program was in place, but which is still being evolved and main-

tained today.

The group offered the following advice to the DoD in regard to setting up a software
metrics program:

A contractor's own process and process improvement efforts should take prece-

dence over DoD-wide mandates. It is difficult to improve when different pro-

cesses and tools are imposed by various customers on different projects since

you cannot maintain organizational consistency. This includes metrics require-

ments and work breakdown structures. Therefore, the government should issue

guidance rather than requirements in the area of metrics collection. It should be

B-9

acceptable to use the contractor's metrics set, assuming a basic level of adequa-

cy.

B.1.5 Future Plans and Directions

The group identified several areas of need and several future directions:

One large area is the need for better tools to help collect data seamlessly, as part

of the development process. Metrics data should flow directly from computer- 0
assisted software engineering (CASE) and software engineering environment

(SEE) tools, without human intervention.

" The tools that are available are not necessarily suited to the group's environ-

ment. It believes that it is going to have to create its own tools.

" Tools that are available sometimes do not measure what the group really needs

to know. For example, reuse tools measure check-ins and check-outs rather than

the amount of actual reuse or the amount of rework done on a reusable product.

"• Function points are being investigated as an alternative to the LOC measure.

"* The group wants to be able to use measures across programs to determine the

benefits from process improvements and to identify the best tools and method-

ologies.

0

B-10

B.2 COMPANY B

This report covers metrics activities in the defense segment of a large aerospace

company. Programs within the defense segment are geographically dispersed. A software

process group, which is part of a centralized software engineering organization, has respon-

sibility for defining and promulgating improved software engineering practices, including

metrics, throughout the entire defense group. It created and documented an initial set of

measures in 1990. Programs were (and still are) encouraged to provide feedback to the pro-

cess group reflecting their experience and judgement as to the benefit of each of the metrics.

This feedback formed the basis for a significant revision of the metrics set, completed in

1993. The update also incorporated improvements derived from the Capability Maturity

Model (CMM) of the Software Engineering Institute (SEI). The current version of the met-

rics standard defines the metrics set, gives guidance for implementing and using the met-

rics, and establishes requirements for consistent collecting and reporting of metric data.

Compliance to the standard is based upon the technical credibility of the software

process group, and its ability to acquire and communicate "best practices" to programs

throughout the defense segment. The programs have found that the return from their met-

rics activities is worth the investment they make. The software process group does high-

level analyses of metrics data across the defense groups and feeds the results back to the

programs. The software process group also supports programs in their use of metrics, pro-

vides electronic templates, gets feedback on which metrics are appropriate, and modifies

the metrics set based on program feedback.

Corporate-level metrics activity at Company B is currently focused on the definition

of a corporate metrics standard based on group experience. The corporate metrics set is a

proper subset of the metrics set defined by the defense group. The Naval Air Systems Com-

mand (NAVAIR) metrics set also is a subset of the defense group's set.

B.2.1 Metrics and Reports

There are three primary focuses of the metrics used by the defense group: estima-

tion, program management, and process improvement.

For cost estimation and pricing, it uses parametric models such as SEER, COCO-

MO, and PRICE-S. The group uses a process called "similar to". Project characteristics

data is collected and stored, along with project cost data, in a defense group program expe-

rience repository (example characteristics data: degree of customer involvement with

development details, references to design documentation, skills of people who worked on

B-11

project). The characteristics data is used to determine whether one project is "similar to"

another. Cost data for past, similar projects provide the basis for software cost estimating

of new projects and for calibration of cost models.

For program management and process improvement, the group uses a set of 21 indi-

cators, where each indicator is typically composed of several metrics. A brief description

of the 21 indicators follows.

1. Cost/Schedule Deviations. Includes actual cost of work performed; budgeted

cost of work scheduled; budgeted cost of work performed; cost variance (bud-

geted minus actual work performed); and schedule variance (budgeted cost of

work performed minus budgeted cost of work scheduled).

2. Requirements Progress. Includes expected total number of software require-

ments (functional, performance, and interface) at completion; cumulative num-

ber of planned requirements; and cumulative number of actual requirements.

3. Requirements TBDs (unresolved requirements at SSR (Software Specifica- 0

tion Review)). Includes planned number of unresolved requirements; actual

number of unresolved requirements; forecasted actual number of unresolved

requirements.

4. Development Progress. Includes percent of planned and actual cumulative pre-

liminary design completions; percent of planned and actual cumulative detailed

design completions; percent of planned and actual cumulative code and unit test

completions.

5. Test Progress. Includes cumulative number of planned and actual developed

test cases; cumulative number of planned and actual developed test procedures;

cumulative number of planned and actual passed test procedures; cumulative

number of planned and actual test reports.

6. CDRL Schedule. Includes cumulative number of software CDRLs (Contract

Data Requirements List) due to the program office; cumulative number of soft-

ware CDRLs delivered to the program office; cumulative number of software

CDRLs delivered to the program office still requiring approval; cumulative 0

number of software CDRLs delivered to the program office and approved.

7. Internal Review Progress. Includes cumulative number of internal reviews

planned; cumulative number of internal reviews conducted.

B-12

8. Requirements Stability. Includes cumulative number of requirements (usually

the number of "shalls") specified, expressed as a percentage that is baselined as

0 100% at the SRR; cumulative number of requirements additions as a result of

resolved TBDs; cumulative number of new requirements additions; cumulative

number of requirements deletions; cumulative number of requirements modifi-

cations.

0 9. Software Size. Includes maximum budgeted size (may be adjusted for engi-

neering changes); expected size in thousands of source lines of code (KSLOC)

(developed plus reused); estimated developed code size; actual developed code

size; reused code size. It is used to manage the size of the software work.

10. Incremental Capability Delivered. Includes original planned number of

requirements delivered for each release; current planned number of require-

ments delivered for each release; planned point in time for each release; actual

0 point in time for each release.

11. Defect Resolution. Includes predicted total number of opened Software

Change Reports (SCRs); actual total number of opened SCRs; total number of
opened SCR that have been dispositioned as approved, withdrawn, rejected,

0 deferred; total number of SCRs whose change has been authorized; total num-
ber of SCRs whose change has been verified; total number of SCRs whose

change has been completed.

12. Code-Impact Defect Resolution. Includes predicted total number of approved

SCRs that affect source code; actual total number of approved SCRs that affect

source code; total number of approved code-impact SCRs that have been veri-

fied; total number of approved code-impact SCRs that are completed.

13. Defect Profile. Includes number of new approved critical SCRs (prevent oper-

ation of the system); number of new approved significant SCRs (degrade oper-

ation of the system); number of other new approved SCRs; defect density (all

approved SCRs/total code size); expected defect density at delivery.

0 14. Defect Response Time. Includes total number of SCRs that have been disposi-

tioned, grouped by age of being opened (one week, two weeks,..., over six

weeks); total number of SCRs that have not yet been dispositioned, grouped by

age; total number of approved SCRs, grouped by length of time opened before

changes were verified.

B-13

15. Defect Characterization. Includes defects are characterized as to TYPE (orig-

inal defect, repeat defect, induced defect, enhancement), SEVERITY, ORIGIN

(life cycle phase or "manuals" or "environmental support"), ACTIVITY (activ-

ity during which the problem was found: analysis, design, implementation, inte-

gration and test, operational use), CAUSE, and NATURE (missing, wrong,

extra).

16. Product Evaluation Findings Characterization. Includes product evaluations

are characterized similarly to defects.

17. Review Action Latency. Includes number of open action items distributed by

number of weeks since origination.

18. Staffing Profile. Includes planned number of software personnel; actual num-

ber of software personnel; number of unplanned personnel losses.

19. Staff Experience. Includes average number of years embedded software devel-

opment experience; desired average number of years embedded software devel-

opment experience; average number of years experience in application domain

(e.g., tactical missiles); desired average number of years experience in applica-

tion domain (e.g., tactical missiles).

20. Staff Training. Includes total number of software personnel needing a particu-

lar type of training (e.g., Ada programming); total number of software person-

nel completing a particular type of training.

21. Target Processor Utilization. Includes amount of resident memory, mass stor-

age, processor throughput, and input/output (1/0) bandwidth available for use;

maximum amount of resource capacity allocated for current use; actual amount

of resource use; estimated amount of resource use.

In practice, not all projects use all of the indicators. All of the metrics are recom-

mended. Programs may tailor the metrics requirements based on their contracts and specific

program needs, and document the tailoring in their program plans.

Broad, subjective status readings are also generated based on the 21 software indi-

cators and other program circumstances. Status readings look at seven areas (cost, sched-

ule, product, process, tools, personnel, and equipment), each of which is rated as critical,

unsatisfactory, satisfactory, or excellent. The metrics standard gives guidance on which

indicators to use in evaluating each status area, and how to assign a rating level to each area.

B-14

A single composite software status rating, composed of a weighted sum of the seven

area status ratings, is also calculated.

B.2.2 Levels of Reporting

Indicators are calculated monthly and used by software program managers for

project management. Some indicators are collected and presented for each computer soft-

ware configuration item (CSCI), while other indicators are collected and presented for a

whole program. Indicators may also be collected for each CSCI but summarized across the

program.

Status readings and composite status ratings are used by program management and

may be reported to upper management.

The software indicator data is also provided monthly to the software process group

and stored in their central repository. Analyses on this data, such as analysis of staffing

needs, analysis of defect characterization to determine effectiveness of product evaluations,

and analysis of the effectiveness of their metrics, are fed back to the programs.

B.2.3 Tools and Repositories

File Maker Pro and Excel are two of the tools the group uses. The emphasis is on
40 keeping data organized and using it on a daily basis. All of this is done using simple tools.

All project metrics information is reported back to the software process group and

kept in a central repository. Projects are encouraged to report their data electronically, over

the company network.

They are not moving in the direction of having a corporate-level repository.

B.2.4 Best Practices and Lessons Learned

0 Company B has seen several benefits from their use of metrics.

" Metrics support the use of cost models, by helping in their calibration to the

company's own work environment. It is beginning to find consistency of model

performance within product lines. (There are still not enough samples to get
* consistency across product lines.)

"• Metrics data have formed the basis for estimating new proposals.

B-15

Metrics form a basis for process improvement. For example, defect character-

izations were used to assess and improve the goodness of their technical product

evaluations.

Of all the metrics in their set, the progress indicators, requirements stability, soft-

ware size, defect metrics, product evaluation characteristics, and resource utilization met-

rics are perceived to be the most important.

One metrics problem encountered is quantifying staff experience.

One lesson learned is that it helps to have uniform practices across a company: it

makes it easier to move people across groups by reducing the "learning curve", and makes

group or company-level metrics analysis feasible.

Advice to DoD:

" Would not favor trying to collect atomic data on a national level-there is too

much diversity. Concentrate instead on good metrics practices, letting individ-

ual companies define their own specific metrics.

" Would not hurt to standardize on a core set of indicators that should be used on

every program (with high-level definitions).

0
B.2.5 Future Plans and Directions

Company B is currently defining a corporate-level metrics standard and continuing

to implement new methods of communicating best practices to programs.

0

0

0

B- 16

0

S

B.3 COMPANY C

Company C is a large computer company operating in both the Department of

0 Defense (DoD) and commercial arenas. This report describes corporate-level metrics activ-

ities related to software quality metrics for use across the commercial sector of the compa-

ny.

In 1990, a corporate instruction established aggressive software quality goals. A

software measurement steering committee was formed, with one representative from each

division producing software products, plus additional representatives from company-wide

groups such as the corporate database group. The steering committee produced two docu-

ments describing corporate-level metrics to be used to track software quality, and is respon-

sible for maintaining and further evolving the documents. The original required metrics set

contained five metrics that were used routinely but not regularly for executive presenta-

tions. As of 1994, the set has been modified to include seven metrics that are required to be

presented quarterly to executive-level company management. Most divisions have adhered

to the definition and usage requirements set for these metrics, with slight deviations in

usage by some divisions.

B.3.1 Metrics and Reports

The goal of the software quality metrics is to achieve significant quality improve-

ments by 1994. A further requirement is that each new product and release have better qual-

ity than its predecessor. Seven required corporate quality metrics will be reported quarterly,

accompanied by other data and charts that further identify the causes of any trends identi-
fied.

1. Product Defects. This measure reports the total number of unique defects

reported for a product, either by customers, by internal testing, or by develop-

0 ment. (A "defect" is a "bug"; a "problem" is anything a customer perceives to

be a problem in using the product, including defects. One defect may result in

more than one problem report by more than one customer.) The number of

defects are reported by month, for the current release, the previous release, and

0 all older releases of a product. In addition to actuals, predicted numbers are plot-

ted. Previously, the number of defects was normalized by dividing it by million

shipped source LOC, but the divisor was later eliminated because of lines of

code (LOC) differences in different languages and because it hid the true cus-

0 tomer perception.

B-17

2. Customer Problems. This measure reports the total number of problem reports

from customers for a given product. It covers all releases of the product and is

reported monthly. It includes usability concerns as well as defective operations.

This metric also was originally divided by LOC, but recently the divisor was

eliminated. Current focus is on classifying customer problem reports more fine-

ly.

3. Customer Satisfaction. Customer satisfaction is measured by routinely admin-

istered surveys. Two related reports are required for each product. The first

shows overall customer non-satisfaction, reported as the percentage of custom-

ers who were overall dissatisfied or neutral about the product. The percentage

is reported for the current release and for all releases and should be reported

quarterly. The second report shows customer non-satisfaction broken into eight

categories (capability, usability, performance, reliability, installability, main-

tainability, documentation, and service), and calculated over the current release

of a product.

4. Service Defects. This metric gives a count of the number of problem fixes that

themselves contained an error. The total number of "service" defects are report-

ed, as well as the number of such defects discovered by a customer. These

defects have a higher level of visibility to the customer, since the customer orig-

inally identified them as errors and sees that they have not been fixed correctly.

In the past, service defects were divided by the total number of defect fixes, but

now Company C looks just at the raw number of service defects. The goal is to

get this number to zero.

5. Problem Resolution Time. This measure shows the average age (from the date

the problem was reported to the date the final solution was completed) for soft-

ware problems of each severity level that were closed during the month. S

6. Cycle Time. Cycle time is defined as the number of months to produce the prod-

uct, starting at the point where 10% of development resources have been

expended and ending at the first shipment of the product to a customer. The

cycle time of all versions and releases of a product should be shown on the same

chart. Both planned and actuals are given, with the size of the product release

noted on the actuals line.

B-18

7. Service Cost. This measure is the total dollar cost expended in servicing all ver-

sions and releases of a product. Both actual and predicted costs are reported, on

- a monthly basis.

In addition to the seven required metrics, there are 10 optional metrics that can be

used as supplemental measures by product and organizational management. These 10 met-

rics are categorized as customer view metrics (problem severity days, defect severity days),
post-process view metrics ("where caused" defects, problems per user month, development

cycle time histogram, fix quality, cycle time/productivity, reuse measurements), and in-pro-

cess view metrics (internal process cycle time, defect backlog).

1. Problem Severity Days. All customer reported problems are weighted accord-

ing to their severity. Severity days is the product of the weight and the number

of days the problem is open. Severity days for each severity level are summed

across all problems and graphed.

2. Defect Severity Days. A weighting and summing of customer reported defects

similar to that done for problem severity days.

3. "Where Caused" Defects. This metric measures the quality of newly devel-

oped code. It is defined as the total number of unique defects found in the new

code/size of the new code.

4. Problems per User-Month. This metric is defined as the total number of prob-

lems encountered by users with a given version of a product/total number of

user-months the version has been in-use. Total user-months is the sum over all

customers of the number of months the customer has had the product version.

5. Development Cycle Time Histogram. This metric shows the percentage of

new code whose development cycle time falls within each of three time ranges

(< 18 months, 18-30 months, > 30 months). The same information is shown for

historical data and for newly planned development over the next two years.

6. Fix Quality. This metric depicts the number of errors made while fixing report-

ed defects in a product. The goal is zero. Fix quality is defined as 100*(number
of erroneous fixes/number of fixes shipped). The metric is reported in a histo-

gram, by quarters. Fix Quality is similar to Service Defects. Service Defects are

charged against the date a defect is corrected; Fix Quality is charged against the

date a defect is caused.

B-19

7. Cycle Time/Productivity. Cycle time and productivity (code size/people years)

of a product release are plotted as a percentage of historical cycle time and pro-

ductivity rates. The N- 1 st release and N-2nd release data for the product are also

plotted, as well as (optional) the plan for the next release.

8. Reuse Measurements. Three metrics are used: reuse percentage, reuse cost

avoidance (estimated cost of developing and maintaining equivalent sized new
code, based on actuals for new code), and reuse value added ((developed code

size + reused code size + size of code contributed to other's reuse)/developed

code size).

9. Internal Process Cycle Time. Baseline, current, and benchmark cycle times

are given for chosen sub-process areas (e.g., system test, bug fix, integration and

build).

10. Defect Backlog. This metric tracks the number of open defects reported by cus-

tomers, per product.

A to-be published article addressing the quality initiatives taken by one product
group lists the following metrics used by the group, in addition to the required metrics:
phase-based defect removal patterns, phase effectiveness, in-process escape rate, percent

of interface defects, integration and build defect arrivals, root cause analysis of defects,

number of delinquent defect fixes, inspection effort and coverage, number of unit test

defects found before and after code integration, testing defect arrivals by phase, testing

defect rates by phase, defect severity distribution, late performance changes, and actual vs.
plan for phase activities such as completion of design reviews, execution of test cases. 0

B.3.2 Levels of Reporting

The metrics defined in this summary are reported to executive-level management
and are used to track quality improvements over product lines over time. In-process mea- 0

surements are defined within product organizations (see examples given in preceding sec-
tion) and used for project management and product quality management.

B.3.3 Tools and Repositories

The interviewee's division keeps predictions for such data as the number of defects,

the number of problems, and customer satisfaction in a database. Later, it can do predicted
vs. actual analyses using the data. Other divisions are believed likely to do similar things.

B-20

The seven required corporate-level measures are kept in a corporate database. The

internal system that is used to log and/or fix problems feeds into this database as well. There

* is also an internal tool that calculates problem resolution time and other measures across

the corporation.

B.3.4 Best Practices and Lessons Learned

• At the corporate level, the most beneficial metric is customer satisfaction. It pro-

vides the most direct measure of how it is doing as a company. For two of the past three

years, 50% of an employee's pay bonus has been based on the customer satisfaction level

reported for his or her division.

* Advice to the DoD:

Keep measures as simple as possible. For example, division by lines of code

(LOC) or calculation of a productivity rate does not work too well across

groups. Keep measurements to essential, basic elements.

• The most important thing is to compare self against self over time, not to do

comparisons among different groups.

The product group mentioned above experienced a 30% reduction in the defect rate

• reported overall by formal testing and a 60% reduction in the defect rate reported by system

testing. The reductions are attributable to front-end process improvements (including

defect prevention process, improved inspection process targeted at the coding phase and at
interface errors) identified by the analysis of metrics data. The group has learned from its

• experience that in-process metrics cannot be used in a piecemeal fashion, but must be inte-

grated, must be interpreted in the context of any models used, and must be compared with

the group's history.

* B.3.5 Future Plans and Directions

In addition to maintaining and evolving the corporate metrics documents, the steer-

ing committee is currently working on the following:

SIn-process measurements. Currently, each division/lab/product is using its own

set. The goal is to define overall in-process measurements for all divisions.

• Object-oriented metrics. LOC is just one example of a common metric that does

not work well with object-oriented development.

B-21

Productivity measure. It is currently based on LOC. Function points might be

more suitable to object-oriented software. The group is addressing issues sur-

rounding function points, such as the difficulty of developing/purchasing tools

to count them.

B-22

S

B.4 COMPANY D

Company D, a commercial avionics software developer, uses the metrics and tools

developed by Quantitative Software Management, Inc. (QSM). Company D is actually a

division of a larger company, so they will be called a "division" in this summary. The divi-

sion's process lead, who is responsible for defining their software development process,

attended a free training class by QSM in the mid-1980's. He became convinced that QSM's

"- approach provided a better way to manage his products. He started with a low-level pro-

gram that trained people in QSM's methods. This program provided immediate benefits,

and led to pressure being place on upper management to establish a metrics program.

Due to their efforts, there is now a division-wide requirement on all projects to
report a metric set based on QSM's metric set. The division uses the book Measure for

Excellence by Larry Putnam (QSM's founder) as its guidelines for metrics definitions. Most

of the division management is QSM trained and owns a copy of this book. This approach

fits with the corporate culture, which strongly prefers the use of off-the-shelf, documented

standards to expending scarce resources to develop company-specific standards.

B.4.1 Metrics and Reports

The division metrics are primarily project management metrics, based on QSM
metrics. Four are key and are measured dynamically:

• Size: Effective SLOC (adjusted for reuse).

"° Cycle time: Time elapsed between key milestones.

° Effort: Staff hours.

"• Reliability: Key is mean time to defect, after release. Tracked are occurrences

of defects, relative to calendar time, taking exposure time into account.

Other metrics include schedule performance index, cost performance index, and a
productivity index (using QSM definitions). The productivity index (PI) for the division is

a 10-year rolling, running average, and is used to estimate effort and time for new projects.

Sometimes they adjust the PI for a new product based on comparisons to existing product
lines (for example, if it is a new type of product for the division). Divisional level MBOs

(management by objectives) are based on the productivity index. All of these metrics are
reported to the division process lead and tracked across the division.

B-23

B.4.2 Levels of Reporting

All the metrics listed in the previous section are reported to the division process lead

and tracked across the division.

B.4.3 Tools and Repositories

The division has used the entire QSM tool set for three to four years, and some of

the tools have been used for much longer. These include:

* Software Lifecycle Management (SLIM): Develops estimations of project

schedule, staffing, costs, and reliability.

* SLIM Control: Performs dynamic project tracking.

* Size Planner: Provides software size estimations.

* Productivity Analysis Database System (PADS): Provides a historical database.

In the process lead's opinion, the biggest difference between QSM's approach and

a COCOMO-based approach to project management is availability of tools to support

QSM's approach (the estimation equations are similar). One attractive and unique aspect of

the QSM estimation tools is that they take a statistical approach and show risk bands around

each number.

There are two types of repositories: dynamic (information from an ongoing project)

and static (information from completed projects). For dynamic information, the "SLIM

Control" tool provides a dynamic project tracking database for each individual project, sup-

porting comparisons of actual project measures to estimations. For static information,

PADS is used to record end-of-project summary data across the entire division. Data is col-

lected via a manual form and then entered into the PADS database. PADS data collection

began in the mid-1980s, when the database was initially populated with project data.

B.4.4 Best Practices and Lessons Learned

Company D's experience with QSM's approach has been very positive. Lessons

learned include the following:

People hate and fear to be measured, so trust must be established first. The orga-

nization got over this hump because (1) there was a high-level requirement for

measurement and (2) groups got benefits quickly. Requests for more money

from management or more time from their customer could then be justified,

based on their metrics data.

B-24

0 An outside consultant should be used to teach training courses, preferably an

outstanding trainer. People put more faith in outside expertise.

* Adoption of a documented, standard metrics set developed elsewhere may save

time and money.

B.4.5 Future Plans and Directions

The division is considering expanding the application of QSM to hardware devel-

opment and systems engineering.

B-25

0

B.5 COMPANY E

E is a large company that produces a wide range of electronics products for com-

0 mercial as well as Department of Defense (DoD) customers. The information in this report

was gathered from a published article written by one member of a corporate champion

group for software process improvement, as well as from a phone interview with the same

individual, now working in a commercial products group. Opinions and advice expressed

come from this one individual and do not necessarily represent company-endorsed ideas.

A company-wide software metrics initiative started several years ago, driven partly

by published studies showing the usefulness of software metrics in improving the technical

and management practices of software engineering. Senior management established policy

requiring the use of metrics in eight areas (delivered defects and delivered defects per size,

total effectiveness throughout the process, adherence to schedule, estimation accuracy,
number of open customer problems, time that problems remain open, cost of nonconfor-

mance, and software reliability) while subsequent discussions among representatives of

several business units added a ninth (software productivity).

A metrics working group, with participation across business units, was established

in the 1980s. Using Basili's Goal-Question-Metric approach, the group established metrics

goals addressing the nine measurement areas and came up with questions and metrics to

support the goals. The result, after 3 years, was a set of 10 common software metrics to be

used across the company, to track improvement over time across projects. The metrics

working group also defined or adapted metrics to be used by projects for in-process control,

0 including specialized metrics for formal software reviews and for software test. It helped

deploy metrics to software development groups, partly by developing and teaching a two-

day training workshop on metrics. Requirements for data collection, analysis, and feedback
were developed and provided to tools groups involved in automating software metrics. In

* addition, criteria were established to use in evaluating commercially available metrics

tools.

Adherence to established company-level metrics requirements varies across busi-

ness groups and is affected partly by their ability to comply. One survey of managers and

software engineers indicated that 67% of them are using the software review metrics devel-

oped by the metrics working group.

0

B-27

0

B.5.1 Metrics and Reports

There are several metrics sets being used within Company E, each contributing to

the company's broad goals of achieving a better understanding of its software processes and

identifying changes to improve productivity, quality, and cycle time. In addition to the 10

process improvement metrics and the in-process control metrics mentioned in the introduc-

tory paragraphs, it has recently developed a set of five common metrics to be reported to

senior managers and executives. A description of each of these three sets follows.

The first set, which is reported to the most senior levels of management within E,

contains five metrics, whose descriptions follow.

1. Software development process and product quality. This metric reports the

number of in-process faults per delta KAELOC, the number of defects per delta

KAELOC, and the number of defects per total released KAELOC. The data is

reported for a whole division by quarters. (KAELOC is thousands of assembler-

equivalent physical source lines of code. Delta source size is the size of the

source code added, deleted, or modified from the previous software release. An

error is a problem found during the review of the phase in which it was intro-

duced; a defect is a problem found later than the phase review; a fault is either

an error or a defect.)

2. Customer satisfaction. Based on customer satisfaction surveys, the metric

reports on customer perception of product quality, timeliness, technology, com-

munication, responsiveness, value to the customer, and performance. A scale of

0 to 10 is used.

3. Cycle time and productivity. This metric reports by quarters the calendar

months per released delta KAELOC, the calendar months per released total

KAELOC, and the delta KAELOC per staff-hour.

4. Software engineering technology roadmap. This metric reports on plans for

different software technologies, as well as implementation to date of the plan.

5. Software Engineering Institute (SEI) Key Process Area (KPA) profile. This

metric reports previous and current scores, from 0 to 100, in the 18 key process

areas defined for maturity levels 2 through 5.

The second set contains 10 process-improvement metrics charts and is primarily

reported to software quality assurance (SQA) and to division-level managers. The charts

B-28

were devised to address the goals of improving project planning, increasing defect contain-

ment, increasing software reliability, decreasing software defect density, improving cus-

tomer service, reducing the cost of nonconformance, and increasing software productivity.

All metrics reported in the charts are calculated over all projects within a division and are

typically plotted against time. The descriptions of the ten charts follow:

1. Software Development Process Quality (in sigma). This chart contains two

metrics, In-Process Faults (IPF) and In-Process Defects (IPD). IPF is defined as

in-process faults caused by delta software development/delta KAELOC; IPD is

defined as in-process defects caused by delta software development/delta KAE-

LOC.

2. Released Software Quality (in sigma). This chart contains two metrics, Total

Released Defects total and Total Released Defects delta. Total Released Defects

total is defined as the number of released defects/total KAELOC; Total
Released Defects delta is defined as the number of released defects caused by

delta software development/delta KAELOC.

3. Customer Found Defects (in sigma). This chart contains two metrics, Custom-

er-Found Defects total and Customer-Found Defects delta. Customer-Found
Defects total is defined as the number of customer-found defects/total KAE-

LOC; Customer-Found Defects delta is defined as the number of customer-

found defects caused by delta software development/delta KAELOC.

4. Post-Release Problem Report Activity. This chart contains two metrics, New

Open Problems and Total Open Problems. New Open Problems is defined as the

total new post-release problems opened during the month; Total Open Problems

is defined as the total number of post-release problems that remain open at the

end of the month.

5. Post-Release Problem Report Aging. This chart contains two metrics, Age of

Open Problems and Age of Closed Problems. Age of Open Problems is defined

as (total time post-release problems remaining open at the end of the month
have been open)/(number of open post-release problems remaining open at the

end of the month); Age of Closed Problems is defined as (total time post-release

problems closed within the month were open)/(number of post-release prob-

lems closed within the month).

0

B-29

6. Cost to Fix Post-Release Problems. This chart contains one metric, Cost of

Fixing Problems. Cost of Fixing Problems is defined as the dollar cost of fixing

post-release problems within the month. An alternative definition for this metric

is the percentage of organizational effort spent for software maintenance or fix-

es.

7. Total Defect Containment Effectiveness. This chart contains one metric, Total

Defect Containment Effectiveness. Total Defect Containment Effectiveness is

defined as the number of pre-release defects / (number of pre-release defects +

number of post-release defects).

8. Phase Containment Effectiveness. This chart contains one metric, Phase Con-

tainment Effectiveness, shown for four phases, requirement, high-level design,
low-level design, and code. Phase Containment Effectiveness is defined as the

number of phase x errors/(number of phase x errors + number of phase x

defects)..

9. Estimation Accuracy. This chart contains two metrics, Schedule Estimation

Accuracy and Effort Estimation Accuracy. Schedule Estimation Accuracy is
defined as actual project duration/estimated product duration; Effort Estimation
Accuracy is defined as actual project effort/estimated project effort.

10. Software Productivity. This chart contains two metrics, Software Productivity

total and Software Productivity delta. Software Productivity total is defined as
total KAELOC/software development effort in person months; Software Pro-

ductivity delta is defined as delta KAELOC/delta software development effort

in person months.

Usage of the third type of metrics, in-process metrics, varies among business

groups, and may typically be addressed in group-level metrics handbooks or may be more
informally propagated through activities such as project status meetings. Examples (not

exhaustive) of some in-process metrics used within E include the following:

1. Life cycle and schedule tracking metrics, typically shown in Gantt chart

form.

2. Cost and earned value tracking metrics, including estimated, budgeted and

actual costs of the project and earned value of the project (the sum of the bud-

geted cost for activities already completed by the project).

B-30

3. Requirements tracking metrics, including actual and projected number of

requirements changes as well as sources and/or causes of requirements changes.

4. Design tracking metrics, including the number of requirements traceable into

design over time as well as design complexity measures.

5. Fault-type tracking metrics, which analyze the types and numbers of faults

* being introduced during coding.

6. Remaining defects metric, which looks at numbers of faults found to date and
predicts the numbers to be found within the next n months using a Rayleigh

curve.

7. Inspection metrics, such as inspection rate, error density per review, and dis-

tribution of faults into categories.

8. Problem severity/priority-tracking metrics, including the number of open
problems of each severity level over time, and the average age of open problems

at each severity level over time.

B.5.2 Levels of Reporting

In-process metrics are used by project management to predict, track, and improve
project-level software development. The 10 division-level software metrics are reported to

SQA and to division management, while the set of 5 high-level metrics are reported to

senior managers and executives.

B.5.3 Tools and Repositories

The Excel Spreadsheet is used company-wide to produce the five senior level
reports that are used. Company C has developed a tool for generating the 10 metrics used

at the division management level, although it is not used much. Some groups had already
developed their own tool (typically, spreadsheets), others had the wrong platform, and still

others were using project-specific metrics rather than the 10 metrics defined at the corporate

level.

Repository usage is typically decentralized, local, and not consistent across the

company. However, there is a database within a corporate group where subsets of the first
set of metrics are provided by business units, and some tracking of where the business units

are relative to these metrics has started. Such data is typically not visible or used at the

project level.

B-31

B.5.4 Best Practices and Lessons Learned

Several best practices and lessons learned emerged from the corporate metrics pro-

gram:

" Metrics are not the goal. Metrics can only show problems and give ideas for

solutions. The benefits come from the improvement actions that are taken in

response to metrics.

" It is better to start with a set of metrics that address your metrics goals and

improve these over time than to debate indefinitely trying to define the "perfect"

metrics set.

" It is better to collect a smaller amount of metrics data rather than a burdensome

amount. Identify what is most important (e.g., cost, schedule) and concentrate

on that. The best software metrics are simple to understand, precisely defined,

and objective.

" An organization must establish an atmosphere where the problems spotlighted

by metrics are discussed in terms of how to improve the process to correct them.

Metrics must not be used to evaluate individual software engineers.

" A metrics program implementation should involve its user community in defin-

ing and accepting the metrics set and should support users through training and

consulting services. As a result of doing this, metrics definitions within E are

close, if not identical, across the company.

" A metrics program should provide help in automating data collection, analysis,

and feedback. Implementation of a metrics program is easier if basic (preferably

automated) systems such as cost accounting, configuration management, and

software problem reporting/tracking are in place.

" Company E encouraged localized data storage, analysis, and feedback, so that

data can be used in the context of a single product group or business unit with

projects of similar size and complexity. It felt that this also made their metrics

initiative more manageable. To satisfy requests for benchmarking data across

projects, the company may later connect localized databases across a network.
Some projects have prepared for the benchmarking usage of metrics by collect-

ing and storing project-description data along with their metrics data.

The following benefits have come from the metrics program:

B-32

Company E has seen quality, productivity, and cycle-time improvements that

are attributable to process improvement actions taken as a result of metrics data.

* For example, one division has achieved a 50-times reduction in the defect den-

sity of its released software over a three and a half year period. Benefits well

outweigh the cost of the metrics program, which, as an example, has been

reported in two divisions as 1% or less of personnel resources.

* Company E has achieved significant cost reductions due to improved quality.

* Metrics have helped improve ship-acceptance criteria.

* Estimation accuracy metrics have helped many projects improve their tech-

niques for estimating schedule, effort, and quality.

0 Software problem-related metrics help in allocating personnel resources to

problem fixes versus new development.

0 In general, metrics focus attention on process improvement and help motivate

improvement. They also help people focus on actions with quantifiable results.

Advice to the DoD:

" Establishment of a common DoD industry-wide repository is not recommend-
0 ed. There would be too many problems to overcome at this time. As organiza-

tions become more sophisticated in the use of metrics and move to higher SEI
maturity levels, some sharing of common metrics data may be possible. How-

ever, the problem of data inconsistency across organizations will still need to be
0 addressed.

" It may be easier to get agreement on common metrics definitions (versus a com-

mon repository). The SEI core metrics would be one good way to start.

0 * Encouraging contractors to use their own metrics data internally to improve the

quality, productivity, and cycle time of their own projects would benefit the

DoD greatly. The side benefit of internal company improvement, cost reduction,

is also a direct benefit to the DoD. For the same reasons, encouraging contrac-

* tors to use the SEI CMM to achieve higher CMM levels would benefit the DoD.

" DoD's overall objective should be to encourage contractor improvements

through internal process and metrics activities and tracking, rather than to estab-

lish the reporting of a common set of metrics to a repository. A contractor's

B-33

0

track record and the dollars charged for a successful project are the types of met-

rics that can be used to distinguish among contractors.

B.5.5 Future Plans and Directions

For DoD funding purposes, metrics buy-in, training, and process improvement and

tool support are the areas that need attention and produce the greatest benefit, rather than

new metrics definitions or other research and development efforts.

B-34

B.6 COMPANY F

Company F is a large, diversified company that includes contract software develop-
0 ment for commercial, Department of Defense (DoD), and government non-DoD customers

among its profit-making activities. The information in this report gives insight into the soft-

ware metrics activities within one division of the company.

Divisional-level metrics usage, less mature than project-level usage, began with the

push to increase the Software Engineering Institute (SEI) maturity level. Total quality man-

agement (TQM) and integrated product teams were additional positive forces on manage-

ment. Project-level metrics usage has been around for a longer time. However, acceptance

of metrics at this level differs depending on the customer and the customer-induced culture.

Personnel in DoD Subsystem Program Offices (SPOs), having two-year tours of duty, tend

to require metrics showing good performance on their shifts. They require projects to man-

age to cost and try to gain some visibility into contractor software process. Commercial

customers also are typically interested in both cost and time-to-market performance of their

contractors. Some non-DoD government customers, however, have long-term associations

with their projects and focus on delivery of the right product rather than on schedule or cost.

Within this subculture, there is a lack of incentive to manage to cost and an accompanying

lackadaisical attitude to metrics collection.

Company F has a corporate quality and integrity policy. The division, in addition,

has its own software process policies and specific metrics specifications.

B.6.1 Metrics and Reports

At the divisional level, metrics goals are to improve cost, schedule, and quality per-

formance within an application domain. More specifically, the company looks at how to

improve delivery time, how to capture the cost of delivering its product, and how to

* improve product quality, where quality is measured in terms of the cost of the rework

applied to the product. It identifies two aspects to quality improvement: improvement in the

ability to elicit requirements that will satisfy the end user, and improvement in the imple-

mentation of the requirements.

* Similar metrics goals are found at the project level. In addition, there may be cus-

tomer-required metrics information, although most of the customers, with the exception of

recent DoD customers, have not placed much emphasis on metrics information.

Metrics that are commonly used within the company include the following:

B-35

0

Size, which may be measured in terms of lines of code or function points. Func-

tion points tend to be used early in the life cycle, but are not universally accept-

ed.

" Complexity, which is identified in terms of the type of application (e.g., in-

house tool, business application, ground support, flight software).

" Defect Counts, which focus on defects that are observable by the end user, as

defined by the Institute of Electrical and Electronics Engineers. Therefore,

requirements, design, and code defects are emphasized.

" Cost and Schedule.

Defect counts and cost and schedule are predicted and analyzed relative to the size

and complexity of the project.

The division specifies 11 process and product metrics, although not all are equally

valued. They include extent of requirements changes, requirements stability, training, pro-

cess assessment, peer review results, computer resource utilization, manpower loading, and

development and test progress.

B.6.2 Levels of Reporting

At the divisional level, the divisions look at how projects are managed to cost and

schedule, and how quality costs affect the bottom line. They analyze different processes

(including training) on different projects to see how they affect cost, schedule, and defect

counts.

The Software Engineering Process Group (SEPG) collects information from the

projects' inspections and problem change reports databases and does various analyses

including review and test effectiveness (no. of errors found/time spent), cycle time to bring

defects to closure, and error severity.

B.6.3 Tools and Repositories

Spreadsheet tools and databases are commonly used in metrics activities. The

SEPG maintains a central repository, which contains information collected from project

inspections databases and problem change report databases.

B.6.4 Best Practices and Lessons Learned

Metrics problems and lessons learned include the following:

B-36

0

" Company F has experienced problems predicting schedule, cost, and expected

defects based on the lines of code (LOC) of a product as well as problems re-

* estimating the LOC-based cost in the face of requirements additions or changes.

" You have to be able to control the software process by controlling the evolution

of the product. There should be one database to handle change control of the

product, including change authorization forms. If direction is not given at the

divisional level, each project will develop its own change control system and

forms.

Advice to the DoD:

S*Every government agency seems to have its own criteria and requirements for

metrics, which is disturbing. There should be one focal point and coordinator

for the DoD. It would be beneficial if the equivalent of the National Institute of

Standards and Technology (NIST) existed to set common criteria for all of soft-

* ware development.

There should be a closer tie-in between requirements volatility and estimates.

Practices such as demonstration/validation (DEMNAL) are helpful in this

respect.

Current Ballistic Missile Defense Organization (BMDO) focus on process

improvement as part of contracts is beneficial and should be extended to the oth-

er services.

B.6.5 Future Plans and Directions

There is an SEPG initiative to collect non-recurring development costs and recur-

ring maintenance costs, cycle times, and defect counts across projects and put them into a

central repository for analyses.

B-37

B.7 COMPANY G

Company G represents the government sector of a corporation that also has a large

presence in the commercial computer and software industry.

Company G has a well-developed software engineering process. Its process docu-

mentation includes a software engineering manual (first version, 1977), software metrics

standards for corporate-level metrics (1990), and metrics data collection procedures. Sim-

ilar process documentation exists for systems engineering, hardware engineering, and

product integration and test. Several pages in the software engineering manual are devoted

to describing project-level metrics, but these are not as crisply defined as the corporate-lev-

el metrics.

Although software metrics standards did not appear until 1990, the current software

collection structure was begun in 1989. Company G has five years of metrics data in the

current form. Prior to that, data collection in a different form began in 1973. All told, 20

* years of metrics data exist.

Company G's goals for its corporate metrics program are to become the best in

breed in metrics data collection and analysis, to provide an integrated infrastructure that
supports low-cost metrics operations, thereby encouraging program-level metrics usage,

and to align with government metrics policy to the extent feasible. Metrics must be appli-

cable to multiple lifecycle models, methodologies, and programming languages.

Current efforts are focused on creating integrated standards across disciplines (sys-

tems engineering, hardware engineering, software engineering, integration and test) and

corresponding integrated measurements. Company G is working on "rules of thumb" for

interpreting and reacting to metrics, for inclusion in the new standards. It is also planning

for training on the new standards. Currently, it has no formal measurements training pro-
• gram. Information is dispersed through Software Engineering Process Groups (SEPGs) at

each site.

B.7.1 Metrics and Reports

Corporate-level software metrics goals are to assess the health of the software engi-

neering discipline and to assess the health of the business. Metrics at the corporate level are

used to provide comparables in estimating new proposals and to track trends (e.g., produc-

tivity, quality, where defects are caught and where they are inserted).

B

B-39

Each project is required to report six types of software metrics data yearly to the

corporate level: lines of source code, labor months, defects, effort distribution, practice

compliance, and elapsed time. Source code is measured in logical lines and is broken down

by language used, by code type (application, executive, diagnostic, horizontal microcode,

support, other), and by whether the code is new, modified, retained, reused, or ported.

Defects are broken down by the phase discovered and by the original source of the error.

Project-level metrics goals are project management and process improvement. Indi- 9

vidual projects augment the corporate metrics set to support day-to-day project manage-

ment.

B.7.2 Levels of Reporting

Measurement data is reported up the management chain, but this does not usually

benefit projects directly because of the reporting time lag and difficulties with comparing

data across projects. Sites tend to collect metrics data by project. Software Quality Assur-

ance (SQA) gathers all project data at the site to deliver to the corporate level. A project

that cannot produce the required metrics is perceived to be in trouble.

B.7.3 Tools and Repositories

Tools are selected on a project or site basis. One company-wide tool under devel- 0
opment is a source code line counter that will count logical statements. The company is

finding it difficult to count changed logical lines of code. Automation supporting its data

collection process needs to be improved. Company G is looking at commercial off-the-

shelf (COTS) tools on personal computers to help in this area. It is also looking at worksta-

tion-based tools to help increase automation of metrics reporting. Several metrics reposito-

ries exist. At one site, SQA gathers data from projects and analyzes it for trends. Historical

metrics data is also used in proposal preparation and project planning.

B.7.4 Best Practices and Lessons Learned

Best practices and lessons learned include the following:

"* Although involved in a corporate-level metrics program, our contact's opinion

is that the most valuable usage of metrics is at the local level, for day-to-day •

project management.

"• Therefore, edicted, company-level metrics must be valuable at the project level

as well.
B

B-40

0

• Comparisons of software metrics across projects are highly sensitive and are

invalid without proper characterization.

* Logical source statements are a better code measure than physical lines.

° Data that is hard to collect is less likely to be valid.

° It is not productive to collect data that you do not know how to analyze or use.

0 ° Metrics are not static-they change with technology and process maturity, and

must adapt to close loopholes, correct miscommunications, and account for out-

liers.

* ° The focus of software metrics should be on the clarity and completeness of

primitive measures.

Problems or issues identified in Company G's metrics program include the follow-

ing:

° Building an infrastructure to support low-cost operations of a metrics program.

* Responding to different metrics requirements from different government orga-

nizations.

• Getting good metrics data from subcontractors who are competitors.

B.7.5 Future Plans and Directions

Company G identifies the following challenges for the future: refinement of metrics

definitions; fitting metrics to projects to provide necessary, sufficient, effective, and effi-

cient measurement; matching up metrics data collection categories with project work

breakdown structures; analyzing measurements and proactively responding to their mes-

sages; identifying metrics and data collection standards for managing subcontracted work;

and identifying metrics that can be compared across projects for managing the business.

Current focus is on creating integrated measurements that span the company's tech-

nical disciplines and include project management as well.

0

B-41

B.8 COMPANY H

Company H, a large, leading developer of commercial personal computer software,

has a company-wide standard set of metrics. The effort to develop the standard set began

three years ago. Each project may choose additional metrics and decide on what to report.

Many of the company's internal management courses emphasize software metrics;

the concept of metrics is embedded as part of the company process.

B.8.1 Metrics and Reports

Monthly status reports are sent from each project to top management which include

key dates for projects, in particular release to manufacturing dates as published, currently

planned, and previously planned.

Currently, projects select their own metrics (other than key dates). Common project

metric goals and specific metrics include the following:

* Quality (number of system crashes, outstanding problem reports)

* Progress (schedule, number of units designed, status)

* Performance (system throughput)

While there are no standard corporate-level metrics, some metrics are commonly

provided by projects to higher levels. These include the following:

* Fagan S-curve (number of bugs found in development life cycle to date)

0 Bug clustering (which modules have the most bugs)

• Churning metric (which modules have been changed the most)

• Slip charts (estimated release-to-manufacturing date versus calendar day)

A very large list of metrics is provided by the company's upper management to its

projects to provide ideas of what metrics might be collected. These metrics can be broken

into the following metric categories, with some sample metrics for each category included.

Note that many are lists and many are subjective.

* Project Completion: Size in source lines of code (SLOC), executable size,
number of bugs (total and by severity), mean time between failure (MTBF),

effort (in person-years), sorted list of files most checked in, sorted list of func-

tions with the most reported bugs, list of tools used.

B-43

• Customer Satisfaction: Units sold, phone calls per unit sold, ease of learning/

installing/customization/access/used.

• Specification: List of competitor features not in product, customer suggestions. 0

• Design: List of procedures that read/write global data, defect removal cost.

* Code: Percent of code used unchanged from another project, percent of adapted

code, complexity (McCabe and Halstead), average module size.

"* Cost of Development and Marketing: Cost of development, testing, user edu-

cation, marketing, program management.

"• Supplier: Cost to determine vendor product's quality.

"° Team: Experience (of developers, testers, program management, marketing,

user education), average number of days of training per year, list of major risks,

staff turnover, workspace.

"° Testing: Find/fix ratio, code coverage, bebugging score (percent of planned 0

bugs found by testing).

"° Corporate Customers: MTBF, mean time to repair, probability of availability.

"° Employee (Subjective) Satisfaction: Feeling of achievement, recognition,

work satisfaction, sufficient responsibility, opportunity for advancement, learn-

ing and growing, satisfactory quality of product.

"° Defect: Severity, symptoms, where and how found, where and when and how

fixed.

The company is currently considering developing documentation metrics.

B.8.2 Levels of Reporting

A standard organizational model for metrics reports is generally followed on every

project.

B.8.3 Tools and Repositories

A standard defect tracking database is used by all projects. Standard metrics are

gathered and compared across projects using this database.

B-44

B.8.4 Best Practices and Lessons Learned

Company H's informal approach to metrics collection worked well when the com-

pany was small, but as the company has grown, there is now a perceived need to formalize

and record metrics information.

The four metrics commonly given at the corporate level (Fagan S-curve, bug clus-

* tering, churning metric, and slip charts) appeared to be some of the more useful metrics.

B.8.5 Future Plans and Directions

This company is continuing to refine its core set of metrics. There is ongoing effort

to improve its development methodology using metrics as a basis.

B-45

B.9 COMPANY I

This company is a major defense contractor in a wide range of military areas. It is

a division of a much larger company that has substantial commercial business. Most of its

software development is done through a group devoted to one military area, which has its

software staff matrixed out to the groups specializing in other business areas.

The company has a 20-year history of metrics usage. The chronology is roughly as

follows:

• 1972-1980: It evolved their current set of metrics.

• 1980-1985: It defined the set of reports they wanted to generate from the met-

rics;

° 1985 to the present: It has been refining the contents of these reports.

The company goal in collecting project metrics is to ensure healthy projects (i.e., to

support project management and risk management). Software project managers use metrics

data to manage their projects. If a project is proceeding without apparent difficulty, senior

management does not look at much of the data. If based on divisional norms that a project

seems to be in trouble, management makes use of all of the metrics data that is collected or

- .produced to help diagnose why the project is ailing and how to help cure it.

The company has corporate-wide policies in place for monitoring process maturity

level and continuing process improvement, as well as a wide range of management and

financial measures such as earnings, return on sales, and others. It currently is addressing

additions to the corporate policy to expand the required project and product quality metrics.

B.9.1 Metrics and Reports

The metric sets of Schultz or Rozum are similar to what this company has been

using successfully for 20 years. It considers this set the minimum essential set for success-

fully managing projects.

Company I's most beneficial metric, "without a doubt," is the rate chart, a profile of

planned versus actual production of units through all life cycle phases.

The most recent addition to the company's set of reports is defect density across

the life cycle (requirements, design, code, and test defects, normalized by lines of code

(LOC)). It is a refinement of previous defect-type reports, one that enables them to reduce

defects during development rather than after testing begins. It also provides a way of imple-

B-47

menting an Software Engineering Institute (SEI) Level 4 requirement according to SEI TR-

87-23 and possibly according to the more recent SEI Capability Maturity Model (CMM).

B.9.2 Levels of Reporting

The company routinely collects a large number of metrics at the project level and

reports them monthly to division level and program management.

B.9.3 Tools and Repositories

The company recently completed a two-year internal development of a metrics tool

that makes it easier to enter metrics data (requiring each data item to be entered only once),

and that calculates and combines data to produce the charts, plots, and reports it uses. The

company could not find a suitable commercial tool for its purposes.

B.9.4 Best Practices and Lessons Learned

Prior to the above tool development, automation of metrics collection and analysis

was a major challenge that each project leader had to solve. Now the company feels that

benefiting from lessons learned on projects is a new challenge requiring further automation

of project data files and the ability to maintain historical records across many projects.

For DoD, the company recommends that mandatory data collection should be lim-

ited to what is needed to meet concrete management goals.

B.9.5 Future Directions

Technology transfer and "buy in" at the working project level continue to have high

importance.

0

B-48

B.10 COMPANY J

J, a well-known company in the aerospace industry, develops products commercial-

ly and for the Department of Defense (DoD). This report addresses metrics practices used

on the commercial side of company J. It reflects the perspective of an individual in an inter-

nal organization that is chartered to run the metrics program for all commercial software

product groups.

Company J uses a metrics framework that is based on the Capability Maturity Mod-

el of the Software Engineering Institute (SEI). Different metrics are used at different level
of process maturity. Although it agrees somewhat with the SEI metrics set, the company's

set is better adapted to its purposes. It feels that trying to measure individual Key Process

areas (KPAs) is not practical.

B.1O.1 Metrics and Reports

The primary goal in using metrics is to improve the company's software develop-
ment and maintenance process ("metrics is the heart of all process improvement"). It col-

lects measurements in four basic areas:

" Size (function point is standard, lines of code (LOC) also used. It is transitioning

0 to fully function points).

" Cost (effort).

"* Quality (defects, trouble reports, change requests, etc.).

0 • Time (e.g., calendar time/phase, time/trouble report, cycle time to fix problems,

time/requirement change).

Company J tailors the use of the basic measurements and additional metrics activi-

ties based on a project's maturity level. Projects in a Level-1 organization collect just the

four basic metrics. They are collected only at the end of the project, and they stay at the
project level. Their experience is that level 1 projects do not have the resources to do more,

and can better expend their efforts in other areas.

At Level 2, the same four basic metrics are collected, but with more attributes. A

total of 8 to 12 metrics are used. Metrics are collected per phase rather than just once per

project. Data is more meaningful, but is still kept at the project level.

At Level 3, the same metrics are collected, but with again more attributes. At this

level, the company does not look at projects but at the functional organization. By now,

B-49

standards exist, and there are consistent data and metrics definitions across the organiza-

tion. Metrics data is put into a repository. The company uses metrics to look at the process

to see how effective it is and where to improve it.

At Level 4, the same metrics again, with more attributes, are used, looking at the

whole division. The division manager can make decisions based on metrics. At this level,

correlations are done between the company process (which is standard across the division)

and the characteristics of its products (e.g., defects, cycle time, productivity).

B.10.2 Levels of Reporting

The metrics group collects and analyzes metrics data and produces reports covering

all commercial groups in the company.

B.10.3 Tools and Repositories

Repositories are used for organizations at Levels 3 and above.

B.10.4 Best Practices and Lessons Learned

Company J offered five pieces of advice to the DoD that reflect its lessons learned

and best practices:

"• Common metrics definitions are important.

"* Start simple at the lower levels of process maturity. Projects at these levels are

not mature enough for complex measures.

" Do not act on metrics data for at least 6 months (12 to 24 months is better)-let

it stabilize. Before six months, there is not enough data for it to be meaningful
and it has not been collected over a broad-enough spectrum of development

activities. Look at trends over a year to see if the data has stabilized.

"• At Levels 1 and 2, only use data for project management. These organizations

are not consistent across projects, so data only has meaning at the project level.

"* Standardization occurs when you go from Level 3 to 4, not before.

B.10.5 Future Plans and Directions

Not discussed.

B-50

LIST OF REFERENCES

- [AFSC 1986] Air Force Systems Command. Jan 1986. Software Management

Indicators. AFSCP 800-43. Washington DC: Andrews Air

Force Base.

[AFSC 1987] Air Force Systems Command, Jan 1987. Software Quality Indi-

0 cators. AFSCP 800-14. Washington DC: Andrews Air Force

Base.

[Andres 1990] Andres, Don. November 1989. Software Project Management

Using Effective Process Metrics: the CCPDS-R Experience.
TRW Technology Series TRW-TS-89-01. Redondo Beach,

CA: TRW.

[Army 1992] Department of the Army. 30 September 1992. Software T&E

Metrics: Recommended Metric Set. Department of Army Pam-

phlet 73-1, Vol. 6, Part VII, Chapter 17, Section I (Draft).Wash-

ington, DC.

[Arthur 1991] Arthur, James D. and Richard E. Nance. August 1991. The For-

malization of Software Quality Indicators Within the Objective/

Principles/Attributes Framework. Third Annual Software Qual-

ity Workshop, Alexandria Bay, NY.

[Basili 1984] Basili, Victor R. and David M. Weiss. 1984. A Methodology for

0 Collecting Valid Software Engineering Data. IEEE Transac-

tions on Software Engineering (November): 728-738.

[Carleton 1992] Carleton, Anita D et. al. 1992. Software Measurementfor DoD

Systems: Recommendations for Initial Core Measures. SEI
Technical Report SEI-92-TR-19. Pittsburgh, PA: Software

Engineering Institute.

[Carleton 1993a] Carleton, Anita D. July 1993. Software Measurement: Embed-

ding Quantitative Principles into Software Engineering. SEI

References- 1

Special Report SEI-93-SR-17. Pittsburgh, PA: Software Engi-

neering Institute.

[Carleton 1993b] Carleton, Anita D., Robert E. Park, and Wolfhart B. Goethert.

1993. Measurement Definitions for DoD Systems: Recommen-

dations for an Initial Core Set. Pittsburgh, PA: Software Engi-

neering Institiute.

[CECOM 1993] U. S. Army Communications - Electronics Command Software

Engineering Directorate. July 12, 1993. Streamlined Integrated

Software Metrics Approach (SISMA) Guidebook: Application

of STEP Metrics. Ft. Monmouth, NJ.

[Chubin 1993] Chubin, Sherrie et al. August 1993. Software Reuse Metrics

Plan. Version 4.1. Washington, D.C.: Defense Information Sys-

tems Agency, Joint Interoperability Engineering Organization,

Center for Information Management.

[Daskalantonakis 1992] Daskalantonakis, Michael K. 1992. A Practical View of Soft-

ware Measurement and Implementation Experiences Within

Motorola. IEEE Transactions on Software Engineering

(November): 998-1010.

[Dion 1992] Dion, Raymond. 1992. Elements of a Process-Improvement

Program. IEEE Software (July): 83-85.

[DISA 1993a] Defense Information Systems Agency. June 1993. Software

Metrics Standardization: Action Plan. Washington, D.C.:

Defense Information Systems Agency, Joint Interoperability

and Engineering Organization Information Processing Direc-

torate.

[DISA 1993b] Defense Information Systems Agency. July 1993. Software

Metrics Standards Implementation Strategy. Washington, D.C.:

Defense Information Systems Agency, Joint Interoperability

and Engineering Organization Information Processing Direc-

torate.

[Dyson 1991] Dyson, Peter and James McGhan. 1991. CECOM Executive

Management Software Metrics (CEMSM) CEMSM Set Defini-

References-2

tion. Indialantic, FL.: Software Productivity Solutions, Inc.

(SPS-EMSM-00191)

0[Dubin 1992] Dubin, Henry C. and Raymond A. Paul. March 1992. Manage-

ment of Software Operational Testing. ITEA Journal.

[Fife 1993] Fife, Dennis W., Bill Brykczynski, and Beth E. Springsteen.

September 1993. Software Risk Assessment for DoD Acquisi-

tion Programs. Alexandria, VA: Institute for Defense Analyses.

IDA Paper P-2636.

[Florac 1992] Florac, William A. 1992. Software Quality Measurement: A

Framework for Counting Problems and Defects. Pittsburgh,

PA: Software Engineering Institute. SEI-92-TR-22.

[Goel 1993] Goel, Amrit L. etal. March 1993. Software Metrics: Analysis

and Interpretation. Draft STEP Technical Report.

[Goethert 1992] Goethert, Wolfhart B. 1992. Software Efforts Measurement: A

Framework for Counting Staff Hours. Pittsburgh, PA: Software

Engineering Institute. SEI-92-TR-21.

[Humphrey 1987] Humphrey, W.S. and W.L. Sweet. 1987. A Method for Assess-

ing the Software Engineering Capability of Contractors. Pitts-

burgh, PA: Software Engineering Institute. SEI-87-TR-23.

[IEEE 1992] IEEE Computer Society. 1992. IEEE Std 1061-1992: IEEE

Standard for a Software Quality Metrics Methodology. New

York, NY: IEEE.

[ISO 1990] International Organization for Standardization. 1990. ISO/IEC

Information Technology-Software Product Evaluation-

Quality Characteristics and Guidelines for Their Use. ISO/IEC

DIS 9126-90.

[Kan] Kan, Stephen H. et al. [n.d.]. AS/400 Software Quality Manage-

ment. Accepted by IBM Systems Journal special issue on soft-

ware quality.

[Koch 1994] Koch, C.F. May 1994. NAWCADWAR Software Measurement

Guide (Vers. 2). Warminster, PA: Naval Air Warfare Center.

References-3

[McGarryF 1993] McGarry, Frank. 1993. Experimental Software Engineering: 17

Years of Lessons in the SEL. Briefing. Greenbelt, MD. NASA

Goddard Space Flight Center.

[McGarryJ 1992a] McGarry, John. May 1992. Software Development Metrics

Department of the Navy. Newport, RI: Naval Undersea Warfare

Center (NUWC).

[McGarryJ 1992b] McGarry, John. November 1992. Navy Submarine Combat Sys-

tems Software Metrics Program. Newport, RI: Naval Undersea

Warfare Center (NUWC).

[McGarryJ 1993] McGarry, John. 1993. Software Development Metrics Qualita-

tive Assessment Structure. Newport, RI: Naval Undersea War-

fare Center (NUWC).

[McGarryJ 1994] McGarry, John H. and Cherl L. Jones. 1994. Application of a

Quantitative Software Metrics Assessment Process to Military

Software Development Programs. Boston, MA: Electro Inter-
national 1994.

[McWhinney 1992] McWhinney, Mark S. and John H. Baumert. 1992. Software

Measures and the Capability Maturity Model. Pittsburgh, PA:

Software Engineering Institute. SEI-92-TR-25.

[MICOM 1991] Army Missile Command. February 1991. Software Manage-

ment Indicators: User's Manual. Red Stone Arsenal, AL: US
Army Missile Command, Software Engineering Directorate.

[Mills 1988] Mills, Everald E. 1988. Software Metrics. Pittsburgh, PA: Soft-

ware Engineering Institute. SEI-CM- 12-1.1.

[Mitre 1985] Mitre Corporation. 1985. Software Reporting Metrics. Bedford,

MA: Mitre Corporation. ESD-TR-85-145. Prepared for Elec-

tronics Systems Division of the Air Force.

[Nance 1993] Nance, Richard E. and James D. Arthur. 1993. Navigating the
Tar Pits or An Holistic Approach to Software Quality Assess-

ment. Gaithersburg, MD: National Institute for Standards and

Technology. NIST Lecture Series on High Integrity Systems.

References-4

[NAVAIR 1992] NAVAIR. 18 June 1992. Avionics Software Metrics. Washing-

ton DC: Naval Air Systems Command. AIR-546, AVION

0 Instruction 5235.1.

[NUSC 1991] Naval Underwater System Center. July 1991. Software Devel-

opment Metrics. Newport, RI: Naval Underwater System Cen-

ter.
[Park 1992] Park, Robert E. 1992. Software Size Measurement: A Frame-

work for Counting Source Statements. Pittsburgh, PA: Software

Engineering Institute. SEI-92-TR-20.

[Paul a] Paul, Raymond A. [n.d.] Metrics to Improve the US Army Soft-

ware Development Process.

[Paul b] Paul, Raymond A. [n.d.] US Army Software T&E Panel (STEP)

Initiatives for Software Risk Management.

[Paul 1992] Paul, Raymond A. November 1992. Metric-based Neural Net-

work Classification Tool for Analyzing Large-Scale Software.

Proceedings of the 1992 IEEE International Conference on
Tools with AI, Arlington, VA.

[Putnam 1992] Putnam, Lawrence H. and Ware Myers. 1992. Measures for

Excellence. New York: Yourdon Press.

[Rifkin 1991] Rifkin, Stan and Charles Cox. 1991. Measurement in Practice.

Pittsburgh, PA: Software Engineering Institute. SEI-91-TR-16.

[RL 1985] Rome Laboratory. 1985. Rome Laboratory Software Quality

Framework (RLSQF). Rome Laboratory. RADC-TR-85-37.

(Three volumes; also available from NTIS as AD-A153-988,

AD-A153-989, and AD-A153-990.)

[RL 1991] Rome Laboratory. 1991. QUES Final Technical Report. Rome

Laboratory. TR-91-407. (Two volumes; also available from

NTIS as AD-A252-679 and AD-A252-976.)

[RL 1992] Rome Laboratory. 1992. A Guide to Software Quality Control.

Rome Laboratory. TR-92-316. (Two volumes.)

[RL 1993] Rome Laboratory. 1993. Cooperstown I Workshop: Creating a
National Vision and Force in Software Through Software Mea-

References-5

surement, August 30-September 1, 1993. Cooperstown, NY:

Rome Laboratory.

[Royce 1990] Royce, Walker. 1990. Pragmatic Quality Metrics for Evolu-

tionary Software Development Models. Carson, CA: TRW.

TRW-TS-91-01.

[Rozum 1992a] Rozum, James A. 1992. Software Measurement Concepts for

Acquisition Program Managers. Pittsburgh, PA: Software

Engineering Institute. SEI-92-TR- 11.

[Rozum 1992b] Rozum, James. October 1992. NAWCADWAR Software Mea-

surement Guide. Pittsburgh, PA: Software Engineering Insti-

tute. SEI/NAWC-92-SR- 1.

[Sackman 1967] Sackman, Harold. 1967. Computers, System Science, and

Evolving Society. New York: Wiley.

[SAF/AQ 1994] Department of the Air Force. 16 February 1994. Software Met-

rics Policy-Action Memorandum. Acquisition Policy 93M-017.

Washington, DC.

[Schultz 1988] Schultz, Herman P. May 1988. Software Management Metrics.

Bedford, MA: MITRE Corporation. NTIS Accession Number

AD-A196 916. Sponsored by the AF Systems Command.

[SEI 1993] Software Engineering Institute. 1993. SEI Quarterly Update,

2Q93. Pittsburgh, PA: Software Engineering Institute.

[SPRC 1992] Software Practices Research Group. 1993. Software Measure-

ment Practices in Industry.

[U.S. Army 1992] U.S. Army STEP Panel. 1992. US Army Software T&E Panel

Metrics Training. Washington, D.C.

[Valett 1989] Valett, Jon D. and Frank E. McGarry. 1989. A Summary of

Software Measurement Experiences in the Software Engineer-

ing Laboratory. Journal of Systems and Software 9:137-148.

[Van Verth 1992] Van Verth, Patricia B. 1992. A Concept Study for a National

Software Engineering Database. Pittsburgh, PA: Software

Engineering Institute. SEI-92-TR-23.

References-6

[Wohlwend 1993] Wohlwend, Harvey and Susan Rosenbaum. 1993. Software

Improvements in an International Company. Proceedings of the

15th International Conference of Software Engineering. New

York: IEEE Computer Society Press.

References-7

BIBLIOGRAPHY1

Adamov, Rade and Lutz Richter. 1990. A Proposal for Measuring the Structural Complex-

ity of Programs. Journal of Systems and Software 12: 55-70.

Air Force Systems Command, Jan 1986. Software Management Indicators. AFSCP 800-

43. Washington D.C.: Andrews Air Force Base.

Air Force Systems Command, Jan 1987. Software Quality Indicators. AFSCP 800-14.

Washington D.C.: Andrews Air Force Base.

Ami Consortium. A Quantitative Approach To Software Management. London, UK: Ami

.Consortium.

Andersen 0. October 1992. Industrial Applications of Software Measurements. Informa-

tion and Software Technology 34/10: 681-693.

Andres, Don. November 1989. Software Project Management Using Effective Process
Metrics: the CCPDS-R Experience. Redondo Beach, CA: TRW. TRW Technology

Series TRW-TS-89-01.

Applications of Software Measurement. See ASM.

ASM93. 1993. Proceedings of the 4th International Conference on Applications of Soft-

ware Measurement, November 7-11, 1993. Orlando, FL.

ASM92. 1992. Proceedings of the 3rd International Conference on Applications of Soft-

ware Measurement. November 15-19, 1993. La Jolla, CA.

Baker, Albert L. et al. 1990. A Philosophy for Software Measurement. Journal of Systems

and Software 12: 277-281.

Baker, Mark D. 1991. Implementing an Initial Software Metrics Program. National Aero-

space Electronics Conference. May 20-24, 1991.

' [n.d.I - no date identified; [n.p] -no publisher identified.

Bibliography-1

Basili, Victor R. 1990. Recent Advances in Software Measurement (Abstract for Talk).

12th International Conference on Software Engineering, March 26-30, 1990, Nice,

France.

Basili, Victor R. and David H. Hutchens. 1983. An Empirical Study of a Syntactic Com-

plexity Family. IEEE Transactions on Software Engineering Vol. SE-9/No. 6 (Novem-

ber): 664-672.

Basili, Victor R. and Barry T. Perricone. 1984. Software Errors and Complexity: An

Empirical Investigation. Communications of the ACM 27/1 (January): 42-52.

Basili, Victor R. and H. Dieter Rombach. 1988. The TAME Project: Towards Improve-

ment-Oriented Software Environments. IEEE Transactions on Software Engineering •

(June): 758-773.

Basili, Victor R. and David M. Weiss. 1984. A Methodology for Collecting Valid Software

Engineering Data. IEEE Transactions on Software Engineering (November): 728-738.

Berry, Rolland H. and George H. Wedberg. 1991. Metrics for Competitiveness. In Pro-

ceedings of the Washington Ada Symposium, June 1991, 119-140. New York: ACM.

Bhide, Sandhiprakash. 1990. Generalized Software Process-Integrated Metrics Frame-

work. Journal of Systems and Software 12: 249-254.

Boeing Defense and Space Group. October 1993. Engineering Operating Instruction on

Software Metrics. Seattle, WA: Boeing Corporation. Engineering Operating Instruction

EOI 7-001 Rev A.

Boeing MIS Division. 1991. Software Metrics Reference Card. Seattle, WA: Boeing Com-

puter Services.

Bourque, Paul and Vianney Cote. 1991. An Experiment in Software Sizing with Structured

Analysis Metrics. Journal of Systems and Software 15: 159-172.

Bowman, Brent J. and William A. Newman. Software Metrics as a Programming Training

Tool. Journal of Systems and Software 13: 139-147.

Brisneham, Linda. 1993. Martin Marietta Astronautics Company Software Metrics Plan.

Panel Session Briefing. 1993 SEI [Software Engineering Institute] Symposium. Pitts-

burgh, PA.

Bibliography-2

Browne, J.C. and Mary Shaw. 1991. Toward a Scientific Basis for Software Evaluation. In

Software Metrics: An Analysis and Evaluation, Alan Perlis, Frederick Sayward, and

* Mary Shaw, editors, 19-41.

Buchan, Fran. [n.d.] Weapon System Software Assessment: A Tool for Development and

Oversight. Briefing. Alexandria, VA. ODASD(PR)IEQ

Card, David N. 1993. What Makes for Effective Measurement? IEEE Software (Novem-

ber): 94-95

Carleton, Anita D. July 1993. Software Measurement: Embedding Quantitative Principles

into Software Engineering. Pittsburgh, PA: Software Engineering Institute. SEI Special

* QReport SEI-93-SR-17.

Carleton, Anita D et. al. 1992. Software Measurementfor DoD Systems: Recommendations

for Initial Core Measures. Pittsburgh, PA: Software Engineering Institute. SEI Techni-

cal Report SEI-92-TR-19.0
Carleton, Anita D., Robert E. Park, and Wolfhart B. Goethert. 1993. Measurement Defini-

tionsfor DoD Systems: Recommendations for an Initial Core Set. Pittsburgh, PA: Soft-

ware Engineering Institute.

* Cartwright, Jeff. 1988. Book review of Software Metrics: Establishing a Company-Wide

Program by Robert B.Grady and Deborah L. Caswell. IEEE Computer (April): 141.

Castellano, David et al. October 1993. The Readiness Growth Model: A Quantitative Anal-

ysis of Software Risk. Picatiny Arsenal, N.J.: U.S. Army Armament Research, Devel-

opment and Engineering Center. Technical Report AR PAD-TR-93003.

CECOM. June 1993. Quick Sight--A Program Manager's Metric Key Question Prefer-

ence. Fort Monmouth, N.J.: U.S. Army Communications Electronics Command

(CECOM).

CECOM. July 1993. Streamlined Integrated Software Metrics Approach (SISMA) Guide-

book: Application of Step Metrics. Fort Monmouth, N.J.: U.S. Army Communications

Electronics Command (CECOM).

Cheadle, William G. November 25, 1991. Software Estimating Process Description and

Procedure (Preliminary Draft Review Copy). Denver, CO: Martin Marietta Astronau-

tics Group.

* Christenson, D.A. et al. [n.d.] Statistical Methods Applied to Software. [n.p.]

Bibliography-3

Chruscicki, Andrew J. [n.d.] Experiences with Software Quality Measurement in the US

Defense Industry. Griffiss AFB, NY: Rome Laboratory.

Chruscicki, Andrew J. [n.d.] Models and Metrics for Measuring Software Scrap and 0

Rework: Air Force Policy Recommendations. Prepared for Lloyd K. Mosemann II,

Deputy Undersecretary of Air Force for Communications, Computers and Logistics.

Griffiss AFB, NY: Rome Laboratory, Software Engineering Branch.

Chubin, Sherrie et al. August 1993. Software Reuse Metrics Plan. Version 4.1. Washington,
D.C.: Defense Information Systems Agency, Joint Interoperability Engineering Orga-

nization, Center for Information Management.

Clapp, Judith. 1993. Getting Started on Software Metrics. IEEE Software (January): 108 &

ff.

Clapp, Judith and Saul Stanten. December 1992. A Guide to Total Software Quality Con-

trol. Bedford, MA: Mitre Corporation. RL-TR-92-316, Volume I and II.

Clay, A.W. et al. 1991. Quality Metrics at AG Communication Systems. American Pro-
grammer (September): 25-34.

Collins, James C. and William C. Lazier. 1993. Vision: The Greatest Companies Started

with the Founders' Core Vision. EMR (Spring): 61-75.

Communications - Electronics Command. See CECOM.

Computer Software Modeling arid Analysis (CSMA), Inc. June 1992. Prototype Software

Metrics Analysis, Project Management, and Risk Analysis Tools Investigation: Phase

2. Final Report. Dewitt, NY: CSMA, Inc. Prepared for U.S. Army Operational Test &
Evaluation Command, Alexandria, VA, and Rome Laboratory, RL/C3C, Griffiss AFB,

NY.

Compton, Terry and Carol Withrow. 1990. Prediction and Control of Ada Software

Defects. Journal of Systems and Software 12: 199-207.

Coupal, Daniel and Pierre N. Robillard. 1990. Factor Analysis of Source Code Metrics.

Journal of Systems and Software 12: 263-269.

Cox, Guy M. [n.d.] Sustaining a Software Metrics Programme in Industry. Palo Alto, CA:

HP Company, Corporate Engineering.

Bibliography-4

Cruickshank, Robert et al. December 1992. Software Measurement Guidebook. Software
Productivity Consortium Report SPC-91060-CMC. Herndon, VA: Software Productiv-

ity Consortium.

Curtis, Bill. 1991. The Measurement of Software Quality and Complexity. In Software

Metrics: An Analysis and Evaluation, Alan Perlis, Frederick Sayward, and Mary Shaw,

editors, 203-224.

Curtis, Bill et al. March 1979. Measuring the Psychological Complexity of Software Main-

tenance Tasks with the Halstead and McCabe Metrics. IEEE Transactions on Software

Engineering Vol. SE-5/No. 2: 96-104.

DACS. See Data and Analysis Center for Software.

Daskalantonakis, Michael K. 1992. A Practical View of Software Measurement and Imple-

mentation Experiences Within Motorola. IEEE Transactions on Software Engineering

(November): 998-1010.

Data and Analysis Center for Software (DACS). 1991. Handouts. Griffiss AFB, NY: Rome

Laboratory.

Data and Analysis Center for Software (DACS). 1992. Proceedings of the Fourth Annual

Software Quality Workshop: Experiences in Software Measurement and Implications

for the Future, Bonnie Castle Resort, Alexandria Bay, New York, August 2-6, 1992.

Griffiss AFB, NY: Rome Laboratory.

Data and Analysis Center for Software (DACS). 1993. DACS Guide: A User's Guide to

DACS Products and Services. Utica, NY: Data Analysis Center for Software.

Data and Analysis Center for Software (DACS). November 2, 1993. Data and Analysis

Center for Software (DACS) Steering Committee Charter. Rome, NY: HlT Research

Institute.

Defense Information Systems Agency. See DISA.

Dehnad, Khosrow. 1990. Software Metrics from a User's Perspective. Journal of Systems

and Software 13: 111-115.

DeMarco, Tom. 1982. Controlling Software Projects. Englewood Cliffs, NJ: Prentice-Hall,
Inc.

Bibliography-5

Denicoff, Marvin and Robert Grafton. Software Metrics: A Research Initiative. In Software

Metrics: An Analysis and Evaluation, Alan Perlis, Frederick Sayward, and Mary Shaw,

editors, 13-18.

Dion, Raymond. 1992. Elements of a Process-Improvement Program. IEEE Software

(July): 83-85.

DISA. September 1993. Military Handbook: Software Measurement Selection and Use.

(MIL-HDBK-SWM). Draft. Washington, D.C.: Defense Information Systems Agency,

Joint Interoperability Engineering Organization, Center for Standards.

DISA. June 1993. Software Metrics Preliminary Assessment. Washington, D.C.: Defense

Information Systems Agency. Joint Interoperability and Engineering Organization,

Center for Standards, Information Processing Directorate.

DISA. June 1993. Software Metrics Standardization: Action Plan. Washington, D.C.:

Defense Information Systems Agency, Joint Interoperability and Engineering Organi-

zation Information Processing Directorate.

DISA. July 1993. Software Metrics Standards Implementation Strategy. Washington, D.C.:

Defense Information Systems Agency, Joint Interoperability and Engineering Organi-

zation, Center for Standards, Information Processing Directorate.

Dubin, Henry C. and Raymond A. Paul. March 1992. Management of Software Operational

Testing. ITEA Journal.

Dyson, Peter and James McGhan. March 1991. CECOM Executive Management Software

Metrics (CEMSM): CEMSM Set Definition (SPS-EMSM-0091). Indialantic, FL: Soft-

ware Productivity Solutions, Inc.

Ejiogu, Lem 0. 1991. TM: A Systematic Methodology of Software Metrics. ACM SIG-

PLAN Notices (January): 124-132.

Ellis, Walter. [n.d.] Shepherding Software Reliability Growth Through Complexity Filters.

Software Process & Metrics, Inc.

European Strategic Programme for Research and Development in Information Technology

(ESPRIT). April 1991. METKIT: Training in Software Engineering Measurement: IT

Developers, Best Practices of Leading Companies. London, UK: Centre for Systems &

Software Engineering, South Bank Polytechnic.

Bibliography-6

Evangelist, Michael. 1988. Complete Solution to the Measurement Problem. IEEE Soft-

ware (January): 83-84.

Fenick, Stewart. 1990. Implementing Management Metrics: An Army Program. IEEE Soft-

ware (March).

Fenick, Stewart. July 1993. Software Process Metrics Program Review to Software Engi-
neering Directorate Division Chiefs and Supervisors' Management Metrics (Briefing).
Fort Monmouth, NJ. U.S. Army CECOM Research, Development, and Engineering

Center.

Fenick, Stewart and Harry F. Joner. 1992. So Much to Measure, So Little Time To Measure
It: The Need for Resource Constrained Management Metrics Programs. 10th Annual

Natural Conference on Ada Technology 1992.

Fenton, Norman E. 1991. Software Metrics: A Rigorous Approach. London, UK: Chapman

& Hall.

Fenton, Norman E. 1993. How Effective Are Software Engineering Methods? Journal of
Systems and Software 22: 141-146.

Fenton, Norman and Austin Melton. 1990. Deriving Structurally Based Software Mea-
sures. Journal of Systems and Software 12: 177-187.

Fife, Dennis W., Bill Brykczynski, and Beth E. Springsteen. September 1993. Software
Risk Assessment for DoD Acquisition Programs. Institute for Defense Analyses. Alex-

andria, VA. IDA Paper P-2636.

Florac, William A. 1992. Software Quality Measurement: A Framework for Counting
Problems and Defects. Pittsburgh, PA: Software Engineering Institute. SEI-92-TR-22.

Gibson, Rose and Frank Arkell. October 1993. Motorola Government & Systems Technol-
ogy Group Software Maturity. Briefing to U.S. Army CECOM.

Gilb, Tom. 1977. Software Metrics. Cambridge, MA: Winthrop Publishers, Inc.

Goel, Amrit L. et al. March 1993. Software Metrics: Analysis and Interpretation. Draft

STEP Technical Report.

Goethert, Wolfhart B. 1992. Software Efforts Measurement: A Framework for Counting

Staff Hours. Pittsburgh, PA: Software Engineering Institute. SEI-92-TR-21.

Grable, Ross. March 1993. Object & Metrics: A Metrics Implementation Plan. Redstone
Arsenal, AL: U.S. Army Missile Command.

Bibliography-7

Grable, Ross. [n.d.] Quality Metrics for Object-Oriented Ada. Redstone Arsenal, AL: U.S.

Army Missile Command.

Grable, Ross. [n.d.] Software Architecture Metrics. Briefing. Redstone Arsenal, AL: U.S.

Army Missile Command.

Grable, Ross. 1991. Software Metrics Design. ACM Southeastern Regional Conference.

Grady, Robert B. and Deborah L. Caswell. 1987. Software Metrics: Establishing a Com-

pany-Wide Program. Englewood Cliffs, NJ: Prentice-Hall, Inc.

GTE. 1992. Software Metrics Handbook, Version 6.0.

Harrison, Warren. 1990. A Foreword to the Special Issue on Using Software Metrics. Jour-

nal of Systems and Software 13: 87-88.

Hausler, Philip A. August 5, 1992. Software Quality Using Cleanroom Software Engineer-

ing. Briefing. Gaithersburg, MD: IBM Corporation, General Sector Division, Clean-

room Software Technology Center. 0

Henry, Sallie and Roger Goff. 1991. Comparison of a Graphical and a Textual Design Lan-

guage Using Software Quality Metrics. Journal of Systems and Software 14: 133-146.

Henry, Sallie and John Lewis. 1990. Integrating Metrics into a Large-Scale Software

Development. Journal of Systems and Software 13: 89-95.

Hetzel, Bill. 1993. Making Software Measurement Work. Boston, MA: QED Publishing

Group.

Hollis, Walker W. and Peter A. Kind. January 4, 1993. Memorandum for SEE Distribution: •

Preparation for Implementing Army Software Test and Evaluation Panel (STEP) Met-

rics Recommendations. Washington, D.C.: U.S. Army, Director of Information Sys-

tems for Command, Control, Communications, & Computers.

Hon, Samuel E., III. 1990. Assuring Software Quality Through Measurements: A Buyer's
Perspective. Journal of Systems and Software 13: 117-130.

Huensch, G.D. et al. 1990. Managing the Final Phases of Software Development Using

Software Reliability Modeling. In Proceedings of the 13th International Switching 0
Symposium, Stockholm, Sweden.

Humphrey, W.S. and W.L. Sweet. 1987. A Method for Assessing the Software Engineering

Capability of Contractors. Pittsburgh, PA: Software Engineering Institute. SEI-87-TR-

23. '

Bibliography-8

0

IBM Federal Systems. February 1993. FSC Measurements. Briefing.

IBM. July 1993. Corporate Programming Measurements Definitions & Reference. Docu-

ment Number CPM-50.

IBM. December 1993. Software Quality Corporate Measurements. Draft.

IEEE Computer Society. 1993. IEEE Std 1045-1992: IEEE Standard for Software Produc-

tivity Metrics. New York, NY: IEEE.

IEEE Computer Society. 1993. IEEE Std 1061-1992: IEEE Standard for a Software Qual-

ity Metrics Methodology. New York, NY: IEEE.

International Organization for Standardization. ISO/JEC Information Technology-Soft-

ware Product Evaluation-Quality Characteristics and Guidelines for Their Use. ISO/

IEC DIS 9126-90.

luorno, Rocco and Robert Vienneau. July 1987. Software Measurement Models: A DACS

State of the Art Report. Rome, NY: IUT Research Institute. Prepared for Rome Air

Development Center, COEE, Griffiss AFB, NY.

Janusz, Paul E. August 1992. Readiness Growth Model: A Quantitative Analysis of Soft-
ware Risk. Briefing. Picatinny Arsenal, NJ: U.S. Army, Armament Research, Develop-

ment & Engineering Center (ARDEC).

Jeffery, D.R. [n.d.] Software Process Quality: Requirements for Improvement from Indus-

try. Sydney, Australia: University of New South Wales, School of Information Sys-

tems.

Jenson, Richard L. and Jon W. Bartley. 1991. Parametric Estimation of Programming

Effort: An Object-Oriented Model. Journal of Systems and Software 15: 107-114.

The Journal of Systems and Software. March 1993. Special issue on the Oregon Metric

Workshop.

Kaman Sciences Corporation. September 22, 1992. DACS Data Analysis Papers. Utica,

NY: Kaman Sciences Corporation. Prepared for Rome Laboratory, RL/C3C, Griffiss

AFB, NY.

Kaman Sciences Corporation. May 7, 1991. Linear Software Reliability Models Under

Imperfect Debugging. Utica, NY: Kaman Sciences Corporation. Prepared for the Rome

Air Development Center (RADC/COEE). Griffiss AFB, NY.

Bibliography-9

Kan, Stephen H. 1991. Modeling and Software Development Quality. IBM Systems Jour-

nal 30/3: 351-362.

Kan, Stephen H. et al. [n.d.]. AS/400 Software Quality Management. Accepted by IBM 0

Systems Journal special issue on software quality.

Kanko, Mark A. 1993. Of Gas Gauges and Software Metrics. Crosstalk Special Edition

1993: 8-18. Hill AFB, UT: Software Technology Support Center. 0

Keyes, Jessica (editor). 1993. Software Engineering Productivity Handbook. New York,

NY: McGraw-Hill.

Koch, C.F. May 1994. NAWCADWAR Software Measurement Guide (Vers. 2). Warmin-

ster, PA: NAWC-AD. •

Lanphar, Robert. 1990. Quantitative Process Management in Software Engineering: A

Reconciliation Between Process and Product Views. Journal of Systems and Software

12: 243-248. 0

Lasky, Jeffrey and Kevin Donaghy. May 1993. Conflict Resolution (CORE) for Software

Quality Factors. Rochester, NY: Rochester Institute of Technology. RL-TR-93-80.

MacCabe, Thomas J. and Charles W. Butler. December 1989. Design Complexity Mea-

surement and Testing. Communications of the ACM 32/12: 1,415-1,425.

McCall, James et al. April 1992. Software Reliability, Measurement, and Testing Guide-

book for Software Reliability Measurement and Testing. San Diego, CA. Science

Application International Corporation (SAIC). RL-TR-92-52. Two volumes.

McGarry, Frank. 1993. Experimental Software Engineering: 17 Years of Lessons in the

SEL. Briefing. Greenbelt, MD: NASA Goddard Space Flight Center.

McGarry, John H. and Cherl L. Jones. 1994. Application of a Quantitative Software Metrics

Assessment Process to Military Software Development Programs. To be presented at 0

Electro International 1994, Boston, MA, May 1994.

McGarry, John H. August 4, 1992. The Impact of Software Development Process Con-

straints on Software Product Quality. Briefing. Newport, RI: Naval Undersea Warfare

Center.

McGarry, John. November 1992. Navy Submarine Combat Systems Software Metrics Pro-

gram. Newport, RI: Naval Undersea Warfare Center (NUWC).

Bibliography-10

S

McGarry, John H. May 1992. Software Development Metrics. Newport, RI: Naval Under-

sea WarFare Center (NUWC).

- McGhan, James and Peter Dyson. February 1992. CECOM Executive Management Soft-

ware Metrics CEMSM Benefit Analysis (SPS-EMSM-00491 -REV-A). Indialantic, FL.:

Software Productivity Solutions, Inc.

* McWhinney, Mark S. and John H. Baumert. 1992. Software Measures and the Capability

Maturity Model. Pittsburgh, PA: Software Engineering Institute. SEI-92-TR-25.

Maness, Richard. February 17-19, 1992. Software Architecture Sizing and Estimating

Tool: SASET Training Course. Martin Marietta.

-- Martin, Johnny and W.T. Tsai. February 1990. N-Fold Inspection: A Requirements Anal-

ysis Technique. Communications of the ACM 33/2 (February): 225-232.

Martin Marietta. February 1992. Technical Report for the Software Metrics Tutorial (NTB-

137-25-02-01). Falcon AFB, CO. Martin Marietta IS. Prepared for Strategic Defense

Initiative Organization.

Martin Marietta Astronautic Group. May 1993. Software Metrics Plan/Procedure. Denver,

CO: Martin Marietta.

Martin Marietta Information Systems. February 11, 1992. Technical Report for the Soft-

ware Metrics Tutorial. NTB Program, Falcon AFB, CO. Prepared for the Strategic

Defense Initiative Organization.

MICOM. February 1991. Software Management Indicators: User's Manual. Red Stone

Arsenal, AL: U.S. Army Missile Command, Software Engineering Directorate.

Mills, Everald E. 1988. Software Metrics. Pittsburgh, PA: Software Engineering Institute.

SEI-CM-12-1.1.

Missile Command. See MICOM.

Mitre Corporation. 1985. Software Reporting Metrics. Bedford, MA: Mitre Corporation.

ESD-TR-85-145. Prepared for Electronics Systems Division of the Air Force.

* Moller, K.H. and D.J. Paulish. 1993. Software Metrics. Piscataway, NJ: IEEE Press.

Moore, David. February 1993. Metrics. Internal memo. Redmond, WA: Microsoft Corpo-

ration.

Bibliography-11

Motorola, Inc. November 1991. Common Motorola Software Metrics. A Motorola Execu-

tive Summary.

Munson, John C. and Taghi M. Khoshgoftaar. 1990. Applications of a Relative Complexity

Metric for Software Project Management. Journal of Systems and Software 12: 283-

291.

Murine, Gerald E. 1985. On Validating Software Quality Metrics. Presented at the 4th

Annual Phoenix Conference, Phoenix, AZ, March 1985.

Myrvold, Alan. 1990. Data Analysis for Software Metrics. Journal of Systems and Soft-

ware 12: 271-275.

Nance, Richard E. and James D. Arthur. October 1993. Navigating the Tar Pits or An

Holistic Approach to Software Quality Assessment. Gaithersburg, MD: National Insti-

tute of Standards and Technology. The NIST Lecture Series on High Integrity Systems.

NASA. March 1992. Data Collection Procedures for the Software Engineering Laboratory

(SEL) Database. Greenbelt, MD: NASA Goddard Space Flight Center.

NASA. November 1990. Manager's Handbook for Software Development. Greenbelt,

MD: NASA Goddard Space Flight Center.

NASA. October 1992. Software Engineering Laboratory (SEL) Database Organization

and User's Guide. Greenbelt, MD: NASA Goddard Space Flight Center.

National Aeronautics and Space Administration. See NASA.

Naval Underseas Warfare Center. September 1993. Fixed Distributed System Share Signal

and Information Processing Segment: Software Development Metrics Analysis Summa-

ry. Newport, RI: Naval Underseas Warfare Center.

Naval Underwater System Center. July 1991. Software Development Metrics. Newport, RI:

Naval Underwater System Center. 0

Nusenoff, Ronald E. and Dennis C. Bunde. 1993. A Guidebook and a Spreadsheet Tool for

a Corporate Metrics Program. Journal of Systems and Software 23: 245-255.

Office of the Inspector General. April 1989. Management of Software for Mission-Critical 0

Computer Resources. Arlington, VA: DoD Office of the Inspector General. Audit

Report No. 89-068.

Oman, Paul W. and Curtis R. Cook. 1990. Design and Code Traceability Using a PDL Met-

rics Tool. Journal of Systems and Software 12: 189-198.

Bibliography- 12

Park, Robert E. 1992. Software Size Measurement: A Framework for Counting Source

Statements. Pittsburgh, PA: Software Engineering Institute. SEI-92-TR-20.

Paul, Raymond A. November 1992. Metric-Based Neural Network Classification Tool for

Analyzing Large-Scale Software. In Proceedings of the 1992 IEEE International Con-

ference on Tools with AI, Arlington, VA.

Paul, Raymond A. [n.d.] Metrics to Improve the US Army Software Development Process.

Paul, Raymond A. September 1993. Software T&E Panel (STEP) Initiatives Status Report.

STEP Briefing.

Paul, Raymond A. June 1992. Software T&E Panel (STEP) Metrics Overview. ARPA

Briefing.

Paul, Raymond A. [n.d.] US Army Software T&E Panel (STEP) Initiatives for Software

Risk Management.

Paulk, Mark A. et al. 1993. Capability Maturity Model for Software, Version 1.1. SEI Tech-

nical Report SEI-93-TR-24. Pittsburgh, PA: Software Engineering Institute.

Perlis, Alan, Frederick Sayward, and Mary Shaw. 1981. Table of contents, preface, and

overview to Software Metrics: An Analysis and Evaluation. Cambridge, MA: The MIT

Press.

Pfleeger, Shari and Clement McGowan. 1990. Software Metrics in the Process Maturity

Framework. Journal of Systems and Software 12: 255-261.

Porter, Adam and Richard Selby. 1990. Evaluating Techniques for Generating Metric-

Based Classification Trees. Journal of Systems and Software 12: 209-218.

Proceedings of the TTCP Workshop on Software Metrics, May 21 - 24, 1990. Rochester

NY: Rochester Institute of Technology.

Putnam, Lawrence H. [various dates] Promotional material. McLean, VA: Quantitative

Software Management (QSM).

Putnam, Lawrence H. and Ware Myers. 1992. Measures for Excellence. New York: Your-

don Press.

Raytheon, Equipment Division, Software Systems Laboratory. [n.d.] Quantifying the Ben-

efit of Software Process Improvement. Briefing.

Bibliography-13

Redmond, James A. and Reynold Ah-Chuen. 1990. Software Metrics-A User's Perspec-

tive. Journal of Systems and Software 13: 97-110.

Reifer, Donald J. July 23, 1990. Joint Integrated Avionics Working Group Reuse Metrics

and Measurement Concept Paper (Draft). Torrance, CA: Reifer Consultants, Inc. Pre-

pared for CTA, Inc., Ridgecrest, CA.

Rifkin, Stan and Charles Cox. 1991. Measurement in Practice. Pittsburgh, PA: Software

Engineering Institute. SEI-91-TR- 16.

Rome Laboratory. 1993. Cooperstown I Workshop: Creating a National Vision and Force

in Software Through Software Measurement, August 30-September 1, 1993. Cooper-

stown, NY: Rome Laboratory.

Rome Laboratory. 1991. Proceedings of the 3rd Annual Software Quality Workshop, Bon-

nie Castle Resort, Alexandria, Bay, New York, August 11-15, 1991. Griffiss AFB, NY:

Rome Laboratory.

Rome Laboratory. August 1993. Software Quality Technology Transfer Consortium. Griff-

iss AFB, NY: Rome Laboratory. Handouts on the consortium, membership benefits,

membership requirements, member profiles, the Quality Evaluation System (QES)

Tool, and the RL Software Quality Framework (RLSQF).

Royce, Walker. 1990. Pragmatic Quality Metrics for Evolutionary Software Development

Models. Carson, CA: TRW. TRW-TS-91-01.

Royce, Walker. January 1990. TRW's Ada Process Model for Incremental Development of

Large Software Systems. Carson, CA: TRW. TRW-TS-90-01.

Royce, Walker. October 1993. UNAS Briefing. Carson, CA: TRW.

Royce, Walker and Rhonda Mustard. [n.d.] An Evolutionary Process Model Adapted to

Software Product Development and Maintenance. TRW System Engineering and

Development Division.

Royce, Walker and Winston Royce. December 1991. Software Architecture: Integrating

Process and Technology. Carson, CA: TRW. TRW-TS-91-04.

Rozum, James. October 1992. NAWCADWAR Software Measurement Guide. Pittsburgh,
PA: Software Engineering Institute. SEI/NAWC-92-SR-1.

Rozum, James A. 1992. Software Measurement Concepts for Acquisition Program Man-

agers. Pittsburgh, PA: Software Engineering Institute. SEI-92-TR-11.

Bibliography-14

Russell, Glen W. 1991. Experience with Inspection in Ultralarge-Scale Developments.

IEEE Software (January): 25-31.

Russell, Meg. 1990. International Survey of Software Measurement Education and Train-

ing. Journal of Systems and Software 12: 233-241.

Sackman, Harold. 1967. Computers, System Science, and Evolving Society. New York:

Wiley.

SAIC Metrics Working Group. 1993. Handbook for Software Measurement Reporting For-

mats.

SAIC Metrics Working Group. 1993. Software Metrics Handbook and Collection Guide.

Samadzadeh, M.H. and K. Nandakumar. 1991. A Study of Software Metrics. Journal of

Systems and Software 16: 229-234.

Schultz, Herman P. May 1988. Software Management Metrics. Bedford, MA: MITRE Cor-

poration. NTIS Accession Number AD-A196 916. Sponsored by the AF Systems Com-

mand.

Schwartz, Karen. September 1992. Army Gets Serious About Defining Software Metrics.

Government Computer News 11/19: 70.

Selby, Richard W. 1990. Extensible Integration Frameworks for Measurement. IEEE Soft-

ware (November): 83, ff.

Shaw, Mary. When is "Good" Enough? Evaluating and Selecting Software Metrics. In Soft-

ware Metrics: An Analysis and Evaluation, Alan Perils, Frederick Sayward, and Mary

Shaw, editors, 251-262.

Smith, O.T. October 1993. Air Force Material Command Embedded Software Manage-

ment Plan Software Development and Sustainment Metrics Task. Briefing. Robbins

Air Force Base, GA: Air Force Material Command.

Software Business Management. 1993. Product Literature-DecisionVision 1. Westford,

MA: Software Business Management.

Software Engineering Institute. 1993. SEI Quarterly Update, 2Q93. Pittsburgh, PA: Soft-

ware Engineering Institute.

Software Practices Research Group. 1993. Software Measurement Practices in Industry.

Software Test and Evaluation Panel. See STEP.

Bibliography-15

SPARTA. May 1989. Software Measurement Process: Evaluation of Software Measure-

ment Support. Arlington, VA: The Analytic Sciences Corporation. TR-9033-2. Pre-

pared for the Strategic Defense Initiative Organization.

SPARTA, Inc., Teledyne Brown Engineering, and The Analytic Sciences Corporation.

May 15, 1989. SDS Software Measurement Plan Technical Report (Draft). Arlington,
VA: The Analytic Sciences Corporation. Prepared for the Strategic Defense Initiative

Organization.

STEP. [n.d.] Definition of the (STEP) Metrics Data Elements: AMC Guidance for Imple-

mentation of STEP Metrics. Picatiny Arsenal, NJ: U.S. Army Armament Research,

Development and Engineering Center.

STEP Panel. [circa 1990] Summary Report: Findings and Recommendations from the Army

Software Test and Evaluation Panel (STEP).

STEP Panel. April 1990. T&E Roles.

Sulack, R.A. et al. 1989. A New Development Rhythm for AS/400 Software. IBM Systems

Journal 28/3: 386-406.

Sunderhaft, Nancy L. and Robert Vienneau. May 1986. STARS Measurement Survey Sum-

mary. Rome, NY: UT Research Institute, Data & Analysis Center for Software
(DACS). Prepared for the STARS Joint Program Office, Arlington, VA, and the Rome

Air Development Center, Griffiss AFB, NY.

Teledyne Brown Engineering, SPARTA, Inc., and The Analytic Sciences Corporation.

September 28, 1990. Verification of Metrics Models via Tools Application Technical

Report. Arlington, VA: The Analytic Sciences Corporation. Prepared for the Deputy

for Engineering, Strategic Defense Initiative Organization.

Texas Instruments. June 1992. Software Metrics Tables.

Tolochko, Sharyn. October 1993. The Readiness Growth Model: A Quantitative Analysis

of Software Risk. EuroSTAR '93, London, U.K.

Tolochko, Sharyn and David Castellano. [n.d.] The Readiness Growth Model: A Quantita-

tive Analysis of Software Risk. Picatiny Arsenal, NJ: U.S. Army Armament Research,

Development and Engineering Center.

Tso, Kam Sing. October 1991. Complexity Metrics for Avionics Software. Beverly Hills,

CA: SoHaR Incorporated. Prepared for USAF Wright Laboratory.

Bibliography- 16

U.S Air Force. 16 February 1994. Software Metrics Policy-Action Memorandum. Acqui-

sition Policy 93M-017. Washington, D.C..

0U.S. Air Force. 1993. Draft Acquisition Policy 93M-017. Washington, D.C.: Office of the

Assistant Secretary of Air Force, Acquisition.

U.S. Air Force. 1993. Guidelines for Successful Acquisition and Management of Software

Intensive Systems: Weapon Systems and Management Information Systems. Washing-

ton, D.C.: Headquarters, U.S. Air Force.

U.S. Army. June 1992. Software T&E Metrics: Recommended Metrics Set. Department of

Army Pam 73-1, Vol. 6, Part IV, Chapter 17, section I.

U.S. Army CECOM Research, Development & Engineering Center, Software Engineering
Directorate. August 2-6, 1992. Panel: Experiences with Management Metrics and Indi-

cators. From Rome Labs Fourth Annual Software Quality Conference, Alexandria, NY,

August 2-6, 1992.

U.S. Army Computer Systems Command. August 1984. Software Quality Engineering

Handbook. Ft. Belvoir, VA: U.S. Army, Quality Assurance Directorate.

U.S. Army STEP Panel. 1992. US Army Software T&E Panel Metrics Training. Washing-

ton, D.C.

Valett, Jon D. and Frank E. McGarry. 1989. A Summary of Software Measurement Expe-

riences in the Software Engineering Laboratory. Journal of Systems and Software 9:

137-148.

Van Verth, Patricia B. 1992. A Concept Study for a National Software Engineering Data-

base. Pittsburgh, PA: Software Engineering Institute. SEI-92-TR-23.

Verner, June. [n.d.] Software Process Maturity: Some Issues in Medium Sized Business

Organizations. Sydney, Australia: University of New South Wales, School of Informa-

tion Systems.

Vienneau, Robert and James D. DeLude. October 22, 1993. Rome Laboratory Research in

Software Measurement. Utica, NY: Kaman Sciences Corporation. Prepared for Rome

Laboratory, RL/C3CB. Griffiss AFB, NY.

Wallace, Dolores R. and John C. Cherniavsky. April 1990. Guide to Software Acceptance.

Gaithersburg, MD: U.S. Department of Commerce. NIST Special Publication 500-180.

Westinghouse Electronic Systems Group. 1993. Software Metrics Handbook.

Bibliography- 17

White, Geoff. 1990. Software Metrics and Plagiarism Detection. Journal of Systems and

Software 13: 131-138.

Willis, Ronald. October 1993. Software Metrics That We Use. Personal communications

with the authors. Hughes Aircraft Company.

Whitty, Robin, Martin Bush, and Meg Russell. 1990. METKIT and the ESPRIT Program.

Journal of Systems and Software 12: 219-221.

Wohlwend, Harvey and Susan Rosenbaum. 1993. Software Improvements in an Interna-

tional Company. Proceedings of the 15th International Conference of Software Engi-

neering. New York: IEEE Computer Society Press.

Yu, Weider D., D. Paul Smith, and Steel T. Huang. 1990. Software Productivity Measure-

ments. AT&T Technical Journal (May/June).

Bibliography- 18

0

LIST OF ACRONYMS

AF Air Force
AFAS Advanced Field Artillery System
AFATDS Advanced Field Artillery Tactical Data System
AFIT Air Force Institute of Technology

AFMC Air Force Materiel Command
AFSC Air Force Systems Command
AFSCP Air Force Systems Command Pamphlet
AIS Automated Information System
AMC Army Materiel Command
ARDEC Army Armament Research, Development, and Engineering Center
ARPA Advanced Research Projects Agency
ASARC Army System Acquisition Review Council
AVION AVIOnics division of NAVAIR
BMDO Ballistic Missile Defense Organization
CASE Computer-Aided Software Engineering
CCPDS-R Command Center Processing and Display System Replacement
CDA Central Design Agency
CDR Critical Design Review

* CDRL Contract Data Requirements List
CECOM Army Communications - Electronics Command
CEMSM Army Communications - Electronics Command (CECOM) Executive Man-

agement Software Metrics
CFS Center for Standards

0 CIM Center for Information Management
CM Configuration Management
CMM Capability Maturity Model
COCOMO COnstructive COst MOdel
COTS Commercial off-the-Shelf
CPU Central Processing Unit
CRM Computer Resource Management
CSC Computer Software Component
CSCI Computer Software Configuration Item
CSU Computer Software Unit

Acronyms-1

DA Department of the Army
DACS Data Analysis Center for Software
DAS Decision Analysis System
DDR&E Director, Defense Research and Engineering
DEM/VAL Demonstration/Validation
DID Data Item Description
DISA Defense Information Systems Agency
DISC4 Director of Information Systems for Command, Control, Communications,

and Computers
DLA Defense Logistics Agency
DoD Department of Defense
DSI Delivered Source Instructions
DSLOC Delivered Source Lines of Code

DSMC Defense Systems Management College
DUSA(OR) Deputy Under Secretary of the Army for Operations Research
ECP Engineering Change Proposal
ESC Air Force Electronics System Center 0
ESD Air Force Electronic Systems Division
FARV Future Armored Resupply Vehicle
FATDS Field Artillery Tactical Data Systems
FCA Functional Configuration Audit
FFRDC Federally Funded Research and Development Center
FQT Formal Qualification Testing
FTE Full-Time Equivalents
FY Fiscal Year
GAO Government Accounting Office
GQM Goal-Question-Metric
HLL High-Level Language
1/0 Input/Output
IDA Institute for Defense Analyses
IDD Interface Design Document
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IM Information Management
IPD In-Process Defects
IPF In-Process Faults
IRAD Internal Research and Development
IRS Interface Requirements Specification
ISO International Standards Organization

Acronyms-2

IT Information Technology
JIEO Joint Interoperability and Engineering Organization

*JLC Joint Logistics Commanders
JSTARS Joint Surveillance Target Attack Radar System
KPA Key Process Area
KAELOC Thousands of Assembler-Equivalent Physical Lines of Code
KSLOC Thousand Source Lines of Code
LOC Lines of Code
MAISRC Major Automated Information System Review Committee
MBO Management By Objective
MICOM Army Missile Command
MIS Management Information System
MSLOC Maintained Source Lines of Code
MTBF Mean Time Between Failures
NASA National Aeronautics and Space Administration
NAVAIR Naval Air Systems Command
NAWC Naval Air Warfare Center
NAWC-AD Naval Air Warfare Center - Aircraft Division
NBCRS Nuclear, Biological, and Chemical Reconnaissance System
NDI Non-Developmental Item

* NIST U.S. National Institute of Standards and Technology
NUSC Naval Underwater Systems Center
NUWC Naval Undersea Warfare Center
O/T Overtime
00 Object Oriented
OPTEC Army Operational Test and Evaluation Command
ORD Operational Requirements Document
OT Operational Test
OT&E Operational Test and Evaluation

0 PADS Productivity Analysis Database System
PC Personal Computer
PCA Physical Configuration Audit
PDL Program Design Language
PDR Preliminary Design Review
PDSS Post-Deployment Software Support
PEO Program Executive Officer
PI Productivity Index
PM Program Manager
PO Program Office

Acronyms-3

PQT Preliminary Qualification Test
QA Quality Assurance
QUES Quality Evaluation System
QSM Quantitative Software Management
R&D Research and Development
RAM Random Access Memory
RFP Request for Proposal
RGM Readiness Growth Model
RL Air Force Rome Laboratory
ROI Return On Investment
SAGE Semi-Automatic Ground Environment
SCM Software Configuration Management 0
SCR Software Change Report
SDD Software Design Document
SDD Software Development and Documentation, MIL-STD-498
SDF Software Development File
SDP Software Development Plan 0
SDR System Design Review
SED Software Engineering Directorate
SED Software Errors or Defects
SEE Software Engineering Environment 0
SEES Software Engineering Evaluation System
SEI Software Engineering Institute
SEL Software Engineering Laboratory
SEPG Software Engineering Process Group
SEPO Software Engineering Process Organization 0
SISMA Streamlined Integrated Software Metrics Approach
SLIM Software Lifecycle Management
SLOC Source Lines of Code
SMMIS Software Metrics Management Information System 0
SOW Statement of Work
SPC Software Productivity Consortium
SPO Subsystem Project Office
SPR Software Problem Report
SPS Software Product Specification 0
SQA Software Quality Assurance
SRP Software Reuse Program
SRR System Requirements Review
SRS Software Requirements Specification 0

Acronyms-4

SSR Software Specification Review
SSS System/Segment Specification

* STARS Software Technology for Adaptable and Reliable Systems
STD Software Test Description
STEP Software Test and Evaluation Panel
STP Software Test Plan
STR Software Test Report

- T&E Test and Evaluation
TBD To Be Defined
TECOM Army Test and Evaluation Command
THAAD THeater High-Altitude Defense

* TQM Total Quality Management
TR Technical Report
TRR Test Readiness Review
TT Technical Test
U.S. United States
USAF United States Air Force
VCSA Vice Chief of Staff of the Army
VDD Version Description Document
WBS Work Breakdown Structure

Acronyms-5

Formn Approved

REPORT DOCUMENTATION PAGE 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per resp. se, including the time for reviewing i.'untnctions, searching existing data sourcer.s,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including auggestions for reducing this burden, to Washington Headquarters Services, Directorateforlnformation Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
April 1994 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Survey of Software Metrics in the Department of Defense and Industry MDA 903 89 C 0003

Task Order T-A15-742

6. AUTHOR(S)

Beth Springsteen, Dennis W. Fife, John F. Kramer, Reginald N. Meeson,
Judy Popelas, David A. Wheeler

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT

NUMBER

Institute for Defense Analyses (IDA) IDA Paper P-2996
1801 N. Beauregard St.
Alexandria, VA 22311-1772

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/IMONITORING AGENCY

Office of the Director, Defense Research and Engineering (ODDRE) REPORT NUMBER

Room 3D359, The Pentagon
Washington, D.C. 20301-3080

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release, unlimited distribution: September 23, 2A
1994.

13. ABSTRACT (Maxinm 200 words)

This report presents a survey of computer software measurement practices and technology in commercial and
DoD organizations. Summaries are provided of 11 DoD and 14 industry programs in regard to metrics goals,
metrics program implementation, metrics sets and reports, tools and repositories, and best practices. The
premise of the survey is that commercial measurement practices are applicable within DoD's acquisition
environment. The study concludes that industry has more mature and vigorous practices and technology than
DoD organizations, largely because industry is applying metrics for clear market-driven reasons while DoD
acquisition lacks comparable motivations. The results will be used to develop recommendations to improve
both software measurement in weapon system acquisition and DoD software measurement research goals.

Appendix C contains the summaries of four commercial organizations requiring legal nondisclosure
agreements. This appendix is published separately and is available only to government officials needing this
information.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Metrics, Software Measurement, DoD Software, Software Technology, Software 214
Tools, Software Repositories, 16. PRICE CODE

17.SECURITYCLASSIFICATION I1. SECURiTY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT IPOF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified I SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

298-102

UNCLASSIFIED

/,0

UNCLASIFI0

